
Exact Dependence Analysis for Increased
Communication Overlap ?

Simone Pellegrini1, Torsten Hoefler2,3, and Thomas Fahringer1

1 University of Innsbruck – DPS at Innsbruck, Austria,
{spellegrini,tf}@dps.uibk.ac.at

2 University of Illinois at Urbana-Champaign, IL, USA,
htor@illinois.edu

3 Department of Computer Science, ETH Zurich, Switzerland
htor@inf.ethz.ch

Abstract. MPI programs are often challenged to scale up to several million
cores. In doing so, the programmer tunes every aspect of the application
code. However, for large applications, this is often not practical and ex-
pensive tracing tools and post-mortem analysis are employed to guide the
tuning efforts finding hot-spots and performance bottlenecks. In this paper
we revive the use of compiler analysis techniques to automatically unveil
opportunities for communication/computation overlap using the result
of exact data dependence analysis provided by the polyhedral model.
We apply our technique to a 5-point stencil code showing performance
improvements up to 28% using 512 cores.

Keywords: Message passing, Compiler Analysis, Data Dependence Anal-
ysis, Polyhedral Model

1 Introduction
The Message Passing Interface (MPI [12]) Standard defines a distributed mem-
ory library interface for use in performance-critical environments such as High
Performance Computing (HPC). One of its main strengths is that the interface
spans several abstraction layers, from very low level constructs (e.g., point-
to-point messaging or simple one sided accesses) to high level performance-
portable functionality (e.g., collective operations or derived datatypes). Highly
optimized implementations exist for several supercomputer architectures and
interconnects (e.g., Myrinet, InfiniBand). Performance and scalability are be-
coming critical aspects for tackling the challenges of exascale computing [14].
Thus, most of the latest research efforts have been spent in the runtime system.

However, the runtime system cannot overcome performance bugs in the
application code. Performance analysis and profiling tools have been proposed
over the years with the goal of helping developers to improve scalability of their
codes [13, 15, 7]. Such tools are often very helpful to determine performance bot-
tlenecks or root causes for performance issues, however, the programmer has to
adapt the code eventually. In addition, tracing and post mortem analysis, may

? This research has been partially funded by the Austrian Research Promotion Agency
under contract nr. 824925 (OpenCore) and under contract 834307 (AutoCore).

2 S. Pellegrini, T. Hoefler, T. Fahringer

1 for(unsigned iter=0; iter<NUM_ITERS; iter++) {

2 S0 MPI_Sendrecv(&A[ROWS -2][0], COLS, MPI_DOUBLE , top, 0,

3 &A[0][0], COLS, MPI_DOUBLE , bottom, 0, MPI_COMM_WORLD , &s);

4 S1 MPI_Sendrecv(&A[1][0], COLS, MPI_DOUBLE , bottom, 1,

5 &A[ROWS -1][0], COLS, MPI_DOUBLE , top, 1, MPI_COMM_WORLD , &s);

6 for(unsigned i = 1; i<ROWS-1; ++i)

7 for(unsigned j = 1; j<COLS-1; ++j)

8 S2 tmp[i][j] = A[i][j] + 1/4*(A[i+1][j]+A[i-1][j]+A[i][j-1]+A[i][j+1]);

9 double** ttemp=A; A=tmp; tmp=ttemp; // swap arrays

10 }

Listing 1.1. 5-points stencil code

be extremely time- and resource-consuming. Tuning the code for a particular
architecture (e.g., determine software pipeline depths and optimal loop arrange-
ment) is thus a very labor-intensive process and is often simply not applied in
production environments.

Compiler technology has been used in the past to optimize MPI programs
[6, 4, 2, 3, 11]. The main idea is to extend the compiler analysis module to under-
stand the semantics of MPI routines and treat them not just like a library call but
as a language construct. In doing so, existing compiler analysis can be utilized
to uncover optimization potentials hidden within the input code.

In this work we show an approach based on compiler analysis, and specif-
ically exact data dependency analysis to maximize the computation/communi-
cation overlap for a given input code. Indeed, increasing the time window on
which computation and communication can be performed in parallel (or over-
lapped) is one of the well known rules of thumb used to optimize MPI codes.
As opposed to the previous compiler-based approaches, we utilize finer-grain
exact analyses using the polyhedral model [1]. Unlike the traditional depen-
dence graph, which contains data dependency information between the pro-
gram statements, the dependence polyhedron lists dependencies on the basis of
statement instances [16]. An instance of a statement is a particular dynamic exe-
cution of that statement. For example, the body of a loop has as many instances
as there are iterations. By using this more detailed analysis our approach in-
creases the overlap window between generating the data or buffer availability
and the final consumption of the data.

2 Motivation and State of the Art
MPI programs often exhibit recurring code patterns which are direct conse-
quences of the programming paradigm. For example, many programs read the
data right after receiving it from a peer process by iterating over the received ar-
ray elements. Similarly, data is usually sent right after the sender process finishes
the computation that writes to array elements being transmitted. A concrete and
relevant example is represented by a standard parallelization of a 5-point stencil
code depicted in Listing 1.1. Stencil codes are very important in computational
sciences and we show a common way to parallelize such a code [9]. We have
communication statements at the beginning of the loop, statements S0 and S1,
which exchange data being computed in the previous iteration. Right after the

Exact Dependence Analysis for Increased Communication Overlap 3

communication is performed, data is updated by a computational loop, state-
ment S2. In both case the compiler sees a true, or Read-After-Write (RAW), data
dependence on the elements of array A from statement S0 to S2 and between S1
and S2.

Traditional compiler analyses usually derive dependence information on a
per-statement basis. For the 5-point stencil code in Listing 1.1 the data depen-
dence graph (DDG) built by classical data dependence analysis [10] is repre-
sented in Figure 1(a). We neglect, in this analysis, the swap statements in line 10
since it introduces data dependencies between successive iterations of the iter
loop which are irrelevant since our focus is in maximizing the overlap within
the loop body. The DDG shows three types of dependencies present in the code:

RAW : Read-After-Write dependencies (a.k.a. true-dependencies);
WAR : Write-After-Read dependencies (a.k.a. anti-dependencies);
WAW : Write-After-Write dependencies (a.k.a. output-dependencies);

Each dependence type is associated with a distance vector represented in brackets
which, in the case of non loop-carried dependencies, is zero. We see that there
are two, non loop-carried, RAW dependencies from statement S0 to S2 and
between S1 and S2, respectively. This is caused by the receive operation (implicit
in the MPI Sendrecv routine) writing elements of the array A. More precisely, the
receive operation in S0 writes A’s array elements in the range A[0][0 : COLS).
Same elements which are going to be read later in the first iteration of the stencil
loop – and thus Read-After-Write – by statement S2. Although correct,these
results are too conservative and coarse grained inhibiting any kind of automatic
optimization. As a matter of fact, every dependence in the DDG exists for all
the dynamic executions, or instances, of interested statements, however this is
not the case. For example the dependence between S0 and S2 only applies to
the first iteration of the stencil loop, all the remaining dynamic executions of
statement S2 are not dependent on S0. Similar considerations can be done for
statement S1, for which the data dependence applies solely to the last iteration
of the stencil loop.

The polyhedral model enables novel data analysis and transformation tech-
niques by representing dependencies at the finest detail in an instance-based
fashion. This technique is also referred to as exact data dependence analysis [16].
This allow a compiler to relax some of the constraints and apply more aggressive
transformations at the array element level which would not be supported by a
more coarse level of analysis at the object level. An example of the dependence
polyhedron for the stencil code is shown in Figure 1(b). The graph contains the
exact same key dependencies but it carries more information for each of them.
An expression predicate states which subset of the statement instances are affected
by the dependence. When the predicate is missing, then the dependence applies
to every instance of that couple of statements. For example, the non loop-carried
RAW dependence between statements S0 and S2 exists for all the instances of S2
where iterator i is 1 and j is between 1 and COLS-2 inclusive. This means that the
remaining instance of the stencil loop are not dependent on the communication
statements and therefore can be used to hide communication costs.

4 S. Pellegrini, T. Hoefler, T. Fahringer

S0 WAW(1)

S2

RAW(0)

S1 WAW(1)

RAW(0)

WAR(1)

WAR(1)

WAW(1)

(a) Statement-based DDG

S0 WAW(1)

S2

RAW(0)
if: 1 ≤ j ≤ COLS-2 ^

i = 1

S1 WAW(1)

RAW(0)
if: 1 ≤ j ≤ COLS-2 ^

i = ROWS-2

WAR(1)
if: 1 ≤ j ≤ COLS-2 ^

i = 1

WAR(1)
if: 1 ≤ j ≤ COLS-2 ^

i = ROWS-2

WAW(1)

(b) Instance-based DDG

Fig. 1. Data Dependency Graph (DDG) for 5-points stencil code in Listing 1.1

3 The Polyhedral Model and Integration of MPI Semantics
The polyhedral model represents, in an algebraic way, the execution of a pro-
gram composed of arbitrary nested loops with affine loop indexes. It captures
both the control-flow and data-flow of a program using three compact linear
algebraic structures, i.e. the iteration domain, the scheduling (or scattering) function
and the access function. The main idea is to define, for a statement S, a space in
ZN where each point correspond to an execution, or instance, of S. The value of
the coordinates of a point within this space represents the value of the N loop
iterators spawning statement S. In order to keep the representation compact,
the space, called polyhedron, is defined by a set of bounding affine inequalities.

Iteration Domain The space on which a statement is defined is also referred to
as its Iteration Domain,DS. For example consider the stencil code in Listing 1.1.
Each statement is defined within an iteration domain which is bound by the
surrounding control flow statements. For example the iteration domains for S0,
S1 and S2 are defined as follows:

DS0 ={ iter | 0 ≤ iter < NUM ITERS}
DS1 ={ iter | 0 ≤ iter < NUM ITERS}
DS2 ={ iter, i, j | 0 ≤ iter < NUM ITERS ∧ 1 ≤ i < ROWS − 1 ∧ 1 ≤ j < COLS − 1}

Iteration domains are represented by an integer matrix A, multiplied by a
so called iteration vector x. The iteration vector determine the dimensionality
of the space on which a statement is defined (composed by the loop iterators
enclosing that statement). For example the iteration domain for statement S2 in

Listing 1.1 is defined by the vector xS2 =

iter
i
j

.

Scheduling Function The second piece of information which is required to
describe the semantics of a program are the so-called scheduling (or scattering)

Exact Dependence Analysis for Increased Communication Overlap 5

functions. Intuitively, statements belonging to a loop body, and subject to the
same control flow, will share identical iteration domains. The information of the
order on which statement instances are executed is not represented. A schedule,
θ(x), is a function which associates a logical execution date, or time-stamp, to each
instance of a statement. This allows the ordering of the instances defined by the
iteration domain and furthermore it defines an execution order for instances of
different statements.

Access Function One last function is also required to capture the data locations
on which a statement operates. The access (or subscript) function describes the
index expression utilized to access an array, and therefore memory locations,
within a statement. For compactness reasons, it is represented as a matrix. Access
functions also store the information whether a particular memory location is
being read (i.e., USE) or written (i.e., DEF). This kind of information is utilized by
the polyhedral model to compute exact data dependency analysis for a given
input code.

3.1 Instance-based Data Dependence Analysis

A statement R depends on a statement S if there exists an operation S(x1), an
operation R(x2), and a memory location m such that:

– S(x1) and R(x2) refer to the same memory location m, and at least one of
them writes to that location;

– x1 and x2 respectively belong to the iteration domain of S and R;
– S(x1) precedes R(x2).

Dependence information is computed on the basis of the three data struc-
tures presented earlier in this section. Intuitively, every point of the iteration
domain is projected into a different space using the affine linear transforma-
tion represented by the access functions. The domain of this transformation is
defined by the statement instances and the co-domain is the memory elements
being accessed by that particular statement. Intersecting the co-domains ob-
tained for every statement yields the set of memory elements for which a data
dependence may occur. Finally combining this information with the statement
execution dates, given by the scheduling matrix, makes it possible to determine
the source and the sink for every dependence.

This complex capability to perform data dependence analysis is imple-
mented in the majority of the libraries supporting the polyhedral model. In
our work we utilized the Integer Set Library (ISL) [17] currently employed in
several mainstream compilers like GCC and LLVM.

3.2 Limitations of the Polyhedral Model

As mentioned above, the polyhedral model requires affine constraints to de-
scribe control- and data-flow. Thus, not every program can be completely rep-
resented in the polyhedral model. To maximize the applicability to arbitrary

6 S. Pellegrini, T. Hoefler, T. Fahringer

programs, the program is typically split into Static Control Parts (SCoPs) that
are defined to be the maximal set of consecutive instructions such that: loop
bounds, conditionals, and subscript expression are all affine functions of the
surrounding loop iterators and global variables; loop iterators and global vari-
ables cannot be modified [1]. Girbal et al. demonstrated that SCoPs capture a
large portion of the computation time in scientific applications [8].

3.3 Integration of MPI Semantics

Another limitation of a SCoP is the absence of any function or library call.
However, if the body of the invoked function is available at compile time,
inlining can be used to increase the size of the SCoP. This technique is applicable
only if the function is not recursive and it has a single-entry and single-exit
point. In order to overcome the problem with library routines, for which the
source code is not available at compile time, our compiler pre-processes the
input program and replaces MPI communication routines with semantically
equivalent loop statements. Indeed our prototype deals with MPI Send and
MPI Recv statements using plain datatypes for now. Under these circumstances,
a send(&buff[offset], size) operation is semantically equivalent to a for
loop reading, i.e., USE, elements buff[i] ∀ i ∈ [o f f set, o f f set + size). Similarly, a
receive(&buff[offset], size) operation will be replaced by a loop writing,
i.e., DEF, the same range of array elements. In this form, programs containing
MPI routines can be handled by the polyhedral model and existing analysis
and transformation tools can be utilized. While this transformation is sound
for most MPI codes, it neglects the message tag and the communicator. To
maintain the original relative ordering, additional data dependencies must be
introduced between the generated loops for communication routines to enforce
MPI’s matching rules. Determining the value of the message tag at a specific
program point requires, in the general case, dataflow analysis reaching beyond
the SCoP boundaries (e.g. aliasing detection).

4 Implementation and Evaluation

In this section we propose a compiler transformation which based on the re-
sult of the instance based data dependence analysis obtained by the polyhe-
dral model, maximize the communication/computation overlap by accordingly
transforming the input program.

4.1 Implementation

The entire approach is implemented in the Insieme Compiler and Runtime in-
frastructure [5]. The Insieme project aims to provide an easy to use, powerful
framework for source-to-source transformations and program analysis for het-
erogeneous multi-core parallel computers. It consists primarily of two compo-
nents: the Insieme Compiler and the Insieme Runtime System. The Insieme Compiler,

Exact Dependence Analysis for Increased Communication Overlap 7

Algorithm 1 Transformation flow for maximizing communication/computation
overlap
1: Input: P = Syntax Tree of the input program; MOD = modified AST
2: Output: T = Syntax Tree of the transformed program
3: T = P
4: repeat
5: MOD = f alse; G = extractDDG(T)
6: for all dep ∈ G do
7: if dist(dep) is 0 && src(dep) is MPI routine && sink(dep) is loop body && dep applies to a subset of the

instances then
8: T = applyLoopFission(T, sink(dep), f indCut(dep)); MOD = true
9: end if
10: end for
11: until MOD is f alse
12: for all dep ∈ G do
13: if dist(dep) is 0 && src(dep) is MPI routine && sink(dep) is loop body then
14: {COMM STMT,WAIT STMT} = toAsynchronous(src(dep))
15: T = removeStmt(T, src(dep))
16: T = moveToEarliestSchedule(T,COMM STMT)
17: T = moveToLatestSchedule(T, {WAIT STMT, sink(dep)})
18: end if
19: end for

on which our work relies, fully integrates the polyhedral model analysis and
transformations and provides a foundation for source-to-source program opti-
mization. Its architecture is designed to support the processing of hybrid input
codes that can include MPI, OpenMP and OpenCL written in C/C++.

Normal Form Before applying any transformation, the input code is pre-
processed into a normal form. In this, an MPI program only contains MPI Send
and MPI Recv statements so that successive steps of the analysis process are
simplified. It is worth noting that the normalized program could have different
buffering requirements and therefore may lead to deadlocks if executed. How-
ever, the program is kept in this normalized form only for the sake of performing
static analysis. The shape of an MPI program in normal form is described by
the following rules:

– Non-blocking point-to-point operations are rewritten to use the correspond-
ing blocking version. This is obtained by replacing every asynchronous
routine with the synchronous counterpart and by removing every MPI Wait
statement in the input code.

– MPI Sendrecv operations are split into the corresponding MPI Send and
MPI Recv operations.

– MPI Ssend, MPI Rsend or MPI Bsend are rewritten to plain MPI Send.

Handling of MPI Routine Semantics Once the program is in normal form, we
replace MPI statements with their semantically equivalent loops as described
in Section 3.3. From this representation of the input program (which does not
contain MPI statements anymore), we proceed with the extraction of the SCoP

8 S. Pellegrini, T. Hoefler, T. Fahringer

1 for(unsigned iter=0; iter<NUM_ITERS; iter++) {

2 MPI_Request __req0, __req1;

3 MPI_Irecv(&A[0][0],COLS,MPI_DOUBLE ,bottom ,0,com,&__req0);

4 MPI_Irecv(&A[ROWS -1][0],COLS,MPI_DOUBLE ,top,1,com,&__req1);

5 MPI_Send(&A[1][0],COLS,MPI_DOUBLE ,bottom ,1,com);

6 MPI_Send(&A[ROWS -2][0],COLS,MPI_DOUBLE ,top,0,com);

7 // stencil loop after fission

8 for(unsigned i = 2; i<ROWS-2; ++i)

9 for(unsigned j = 1; j<COLS-1; ++j)

10 tmp[i][j] = A[i][j] + 1/4*(A[i+1][j]+A[i-1][j]+A[i][j-1]+A[i][j+1]);

11 MPI_Wait(&__req0, MPI_STATUS_IGNORE);

12 // first iteration of stencil

13 for(unsigned j = 1; j<COLS-1; ++j)

14 tmp[1][j] = A[1][j] + 1/4*(A[2][j]+A[0][j]+A[1][j-1]+A[1][j+1]);

15 MPI_Wait(&__req1, MPI_STATUS_IGNORE);

16 // last iteration of stencil loop

17 for(unsigned j = 1; j<COLS-1; ++j)

18 tmp[ROWS -2][j] = A[ROWS -2][j] + 1/4*(A[ROWS -1][j]+

19 A[ROWS -3][j]+A[ROWS -2][j-1]+A[ROWS -2][j+1]);

20 double** ttemp=A; A=tmp; tmp=ttemp; // swap arrays

21 }

Listing 1.2. 5-points stencil code after code optimization

and the dependence polyhedron associated to it. In doing so we keep a link to
the communication statement being replaced internally.

Code transformation Once the instance-based DDG is generated, we apply a
sequence of transformations as described in Algorithm 1. The idea is to iterate
through all the non loop-carried dependencies which have an MPI commu-
nication statement as the source and a loop body as sink. If the dependence
applies to a subset of the instances of the sink then we split the loop, applying
the loop fission transformation [10], at the range provided by the dependence
analysis. In this way the iterations which are dependent on the MPI commu-
nication statement are isolated into a new loop statement. Notice that fission
is possible as long as there are no dependencies in the loop body that conflict
with the transformation being applied. The transformation framework in the In-
sieme Compiler implements a pre-condition analysis which determine whether
a transformation can be safely applied.

The procedure repeats until a fix-point is reached where every dependence
in the DDG applies to all the instances of the source and sink statement. The
next step is to consider all dependencies between communication statements
and computational loops based on the transformed code. For each of them, the
source of the dependence – the communication statement – is removed from the
code and the corresponding asynchronous version of the routine is scheduled in
its earliest position (which is determined by constraints in the DDG). Listing 1.2
shows the transformed stencil code from Listing 1.1. The receive is scheduled at
the beginning of the loop body as shown in lines 3 and 4. The loop depending on
the communication statement, i.e., the sink, is scheduled lazily prepending to it
an MPI Wait operation placed to preserve the semantics of the program, lines 11
– 19 of Listing 1.2. The remaining non-dependent loop iterations will be, by the
end of the transformation, confined between the issuing of the asynchronous

Exact Dependence Analysis for Increased Communication Overlap 9

VSC2 LEO3

of MPI
Original

(in msecs.)
Transformed
(in msecs.)

Improvement
(in %) # of MPI

Original
(in msecs.)

Transformed
(in msecs.)

Improvement
(in %)

16 219 218 0.3 12 264.9 264.5 0.09
32 89.7 89.0 0.8 24 118.7 118.9 -0.01
64 35.1 32.0 9.5 48 37.4 37.0 0.9

128 20.1 17.9 12.6 96 21.0 20.2 4.0
256 13.1 11.5 13.5 192 11.3 9.8 15.3
512 12.0 9.3 27.9 384 7.6 6.4 19.1

Table 1. Evaluation of the transformed code on the VSC2 and LEO3 cluster, fixed problem
size of 4Kx4K and NUM ITERS=10
communication operations and the consumption of the received data (lines
8–10). Therefore maximizing the overlap window.

The transformation can be easily extended to take into account loop-carried
dependencies, in that case the distance of the data dependence, d, defines the
number of loop cycles which can be executed between the source and the sink of
the dependence. This can be handled by automatically allocating an array of d
requests objects for each communication routine where the MPI Wait statement
of a request generated by a communication statement at iteration i happens at
iteration i+d. This transformation, also known as software pipelining [10], requires
additional control code, therefore overhead, to be inserted by the compiler to
correctly fill and unload the pipeline. A compiler can employ static heuristics
in order to determine when software pipelining is beneficial for a given input
code.

4.2 Evaluation
We tested the transformed 5-point stencil code, depicted in Listing 1.2, on two
production clusters and compared its execution time with the original code
shown in Listing 1.1. The (i) Vienna Supercomputing Cluster 2 (VSC2) is a HPC
system which consists of 1,314 nodes, with 2 AMD 8-cores Opteron 6132 HE
processors each; the (ii) LEO3 cluster which consists of 162 compute nodes,
with 2 Intel 6-cores Xeon X5650 CPUs. Both clusters use InfiniBand 4x QDR
high speed interconnect.

The code has been executed keeping the problem size constant, 4K by 4K
elements, and varying the number of MPI processes, results for both archi-
tectures are shown in Table 1. We see that, as expected, the transformed code
has overall a better performance. Additionally, the improvement increases with
the number of cores since the smaller problem slice assigned to each proces-
sor is, the more dominant the communication overhead becomes. Since our
transformation aims at hiding communication costs, its benefit grows as the
computation/communication ratio diminishes.

5 Conclusions and Outlook
In this paper we showed a compiler optimization which leverages instance-
based data dependence analysis, based on the polyhedral model, to isolate loop
iterations which are dependent on MPI communication statements. Consecu-
tive proper rescheduling of statements allows the communication/computation
overlap to be maximized.

10 S. Pellegrini, T. Hoefler, T. Fahringer

Differently from classic data dependence analysis results, which state depen-
dence relationships at statement level, our approach finds overlap opportunities
within loop iterations and therefore at a more finer grain level.

We implemented the entire approach in the Insieme source-to-source com-
piler [5] and showed how the transformed code has an improved performance,
up to 28% faster with 512 cores, because of the increased overlap.

Acknowledgments. This work was supported by the Austrian Ministry of Science
BMWF as part of the UniInfrastrukturprogramm of the Research Platform Scientific
Computing at the University of Innsbruck. Furthermore, the computational results pre-
sented have been achieved in part using the Vienna Scientific Cluster (VSC).

References
1. Benabderrahmane, M.W., et al.: The polyhedral model is more widely applicable

than you think. In: Proc. of the Intl. Conf. on Compiler Constr. LNCS (Mar 2010)
2. Danalis, A., Pollock, L., Swany, M.: Automatic MPI application transformation with

ASPhALT. In: Par. and Distr. Proc. Symp., IPDPS 2007. pp. 1 –8 (Mar 2007)
3. Danalis, A., Kim, K.Y., Pollock, L., Swany, M.: Transformations to parallel codes

for communication-computation overlap. In: Proceedings of the 2005 ACM/IEEE
conference on Supercomputing. pp. 58–. SC ’05, Washington, DC, USA (2005)

4. Danalis, A., Pollock, L., Swany, M., Cavazos, J.: MPI-aware compiler optimizations
for improving communication-computation overlap. In: Proceedings of the 23rd
international conference on Supercomputing. pp. 316–325. ICS ’09 (2009)

5. Distributed and Parallel Systems Group, University of Innsbruck: Insieme Comiler
and Runtime Infrastructure, http://insieme-compiler.org

6. Fahringer, T., Mehofer, E.: Buffer-safe communication optimization based on data
flow analysis and performance prediction. In: Proc. of the 1997 Intl. Conf. on Parallel
Architectures and Compilation Techniques, PACT’97. pp. 189–200 (1997)

7. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca
performance toolset architecture. CCPE Journal 22(6), 702–719 (Apr 2010)

8. Girbal, S., et al.: Semi-automatic composition of loop transformations for deep par-
allelism and memory hierarchies. Intl. Journal of Par. Progr. 34(3), 261–317 (Jun 2006)

9. Gropp, W., Lusk, E., Skjellum, A.: Using MPI (2nd ed.): portable parallel program-
ming with the message-passing interface. MIT Press, Cambridge, MA, USA (1999)

10. Kennedy, K., Allen, J.R.: Optimizing compilers for modern architectures: a
dependence-based approach. San Francisco, CA, USA (2002)

11. Knüpfer, A., et al.: The vampir performance analysis tool-set. In: Tools for High
Performance Computing, pp. 139–155 (2008)

12. MPI Forum: MPI: A Message-Passing Interface Standard. Version 2.2 (September 4th
2009), available at: http://www.mpi-forum.org (Dec 2009)

13. Shende, S.S., Malony, A.D.: The Tau Parallel Performance System. Int. J. High Per-
form. Comput. Appl. 20(2), 287–311 (May 2006)

14. Thakur, R., Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Hoefler, T., Kumar, S.,
Lusk, E., Traeff, J.L.: MPI at Exascale. In: Procceedings of SciDAC 2010 (Jun 2010)

15. Truong, H.L., Fahringer, T.: SCALEA: A performance analysis tool for distributed
and parallel programs. In: Euro-Par 2002, LNCS, vol. 2400, pp. 41–55 (2002)

16. Vasilache, N., Cohen, A., Bastoul, C., Girbal, S.: Violated dependence analysis. In: In
ACM ICS (2006)

17. Verdoolaege, S.: isl: An Integer Set Library for the Polyhedral Model. In: Mathemat-
ical Software ICMS 2010, LNCS, vol. 6327, pp. 299–302 (2010)

