
AllConcur: Leaderless Concurrent Atomic Broadcast
Marius Poke

HLRS
University of Stuttgart
marius.poke@hlrs.de

Torsten Hoefler
Department of Computer Science

ETH Zurich
htor@inf.ethz.ch

Colin W. Glass
HLRS

University of Stuttgart
glass@hlrs.de

ABSTRACT
Many distributed systems require coordination between the compo-
nents involved. With the steady growth of such systems, the proba-
bility of failures increases, which necessitates scalable fault-tolerant
agreement protocols. The most common practical agreement pro-
tocol, for such scenarios, is leader-based atomic broadcast. In this
work, we propose ALLCONCUR, a distributed system that provides
agreement through a leaderless concurrent atomic broadcast algo-
rithm, thus, not suffering from the bottleneck of a central coordinator.
In ALLCONCUR, all components exchange messages concurrently
through a logical overlay network that employs early termination
to minimize the agreement latency. Our implementation of ALL-
CONCUR supports standard sockets-based TCP as well as high-
performance InfiniBand Verbs communications. ALLCONCUR can
handle up to 135 million requests per second and achieves 17× higher
throughput than today’s standard leader-based protocols, such as
Libpaxos. Thus, ALLCONCUR is highly competitive with regard to
existing solutions and, due to its decentralized approach, enables
hitherto unattainable system designs in a variety of fields.

KEYWORDS
Distributed Agreement; Leaderless Atomic Broadcast; Reliability

ACM Reference format:
Marius Poke, Torsten Hoefler, and Colin W. Glass. 2017. AllConcur: Leader-
less Concurrent Atomic Broadcast. In Proceedings of HPDC ’17, Washington
, DC, USA, June 26-30, 2017, 14 pages.
https://doi.org/http://dx.doi.org/10.1145/3078597.3078598

1 INTRODUCTION
Agreement is essential for many forms of collaboration in distributed
systems. Although the nature of these systems may vary, ranging
from distributed services provided by datacenters [16, 18, 59] to dis-
tributed operating systems, such as Barrelfish [56] and Mesosphere’s
DC/OS [46], they have in common that all the components involved
regularly update a shared state. In many applications, the state up-
dates cannot be reduced, e.g., the actions of players in multiplayer
video games. Furthermore, the size of typical distributed systems has
increased in recent years, making them more susceptible to single
component failures [54].

Atomic broadcast is a communication primitive that provides
fault-tolerant agreement while ensuring strong consistency of the

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
HPDC ’17, June 26-30, 2017, Washington , DC, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-4699-3/17/06. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3078597.3078598

leader-based
group

p0 p1 p7

leader

(3)(1)

(2)

8 servers

(a) Leader-based agreement (b) ALLCONCUR

Figure 1: Agreement among 8 servers: (a) Using a leader-based
group; three operations needed per update—(1) send; (2) repli-
cate; and (3) disseminate. (b) Using a digraph G with degree
three and diameter two [58].

overall system. It is often used to implement large-scale coordination
services, such as replicated state machines [33] or travel reservation
systems [59]. Yet, today’s practical atomic broadcast algorithms rely
on leader-based approaches, such as Paxos [37, 38], and thus, they
may suffer from the bottleneck of a central coordinator, especially
at large scale.

In this paper, we present ALLCONCUR1—a distributed agree-
ment system that relies on a leaderless atomic broadcast algorithm.
In ALLCONCUR, all participants exchange messages concurrently
through an overlay network, described by a digraph G (§ 2.1). The
maximum number of failures ALLCONCUR can sustain is given
by G’s connectivity and can be adapted to system-specific require-
ments (§ 4.4). Moreover, ALLCONCUR employs a novel early ter-
mination mechanism (§ 2.3) that reduces the expected number of
communication steps significantly (§ 4.2.2).

Distributed agreement vs. replication. Distributed agreement
is conceptually different from state machine replication (SMR) [36,
55]: Agreement targets collaboration in distributed systems, while
SMR aims to increase data reliability. Moreover, the number of
agreeing components is an input parameter, while the number of
replicas depends on the required data reliability.

ALLCONCUR vs. leader-based agreement. We consider the
agreement among n servers (see Figure 1 for n = 8). ALLCON-
CUR has the following properties: (1) subquadratic work, i.e., O (nd),
where d is G’s degree (§ 4.1); 2) adjustable depth, given by G’s
diameter and fault diameter (§ 4.2.2); (3) at most 2d connections per
server; and (4) server-transitivity, i.e., all servers are treated equally,
which entails fairness. In contrast, typical leader-based deployments
do not have all of the above properties. Figure 1a shows an example
of leader-based agreement. Each server sends updates to the group’s
leader, which, for reliability, replicates them within the group; the
replicated updates are then disseminated to all servers. In typical
leader-based approaches, such as client-server gaming platforms,

1Algorithm for LeaderLess CONCURrent atomic broadcast

https://doi.org/http://dx.doi.org/10.1145/3078597.3078598
https://doi.org/http://dx.doi.org/10.1145/3078597.3078598

HPDC ’17, June 26-30, 2017, Washington , DC, USA M. Poke, T. Hoefler, C. W. Glass

servers interact directly with the leader (for both sending and receiv-
ing updates). Although such methods have minimal depth and can
ensure fairness, they require quadratic work and the leader needs to
maintain n connections (§ 4.5).

Data consistency. ALLCONCUR provides agreement while guar-
anteeing strong consistency. In particular, we focus on the strong
consistency of state updates; thus, throughout the paper we use both
request and update interchangeably. For strongly consistent reads,
queries also need to be serialized via atomic broadcast. Serializing
queries is costly, especially for read-heavy workloads. Typical co-
ordination services [33] relax the consistency model: Queries are
performed locally and, hence, can return stale data. ALLCONCUR

ensures that a server’s view of the shared state cannot fall behind
more than one round, i.e., one instance of concurrent atomic broad-
cast; thus, locally performed queries cannot be outdated by more
than one round.

1.1 Applications and summary of results
ALLCONCUR enables decentralized coordination services that re-
quire strong consistency at high request rates; thus, it allows for
a novel approach to several real-world applications. We evaluate
ALLCONCUR using a set of benchmarks, representative of two such
applications: (1) travel reservation systems; and (2) multiplayer
video games.

Travel reservation systems are typical scenarios where updates
are preceded by a large number of queries, e.g., clients check many
flights before choosing a ticket. To avoid overloading a central server,
existing systems either adopt weaker consistency models, such as
eventual consistency [18], or partition the state [59], not allowing
transactions spanning multiple partitions. ALLCONCUR offers strong
consistency by distributing queries over multiple servers that agree
on the entire state. Each server’s rate of introducing updates in the
system is bounded by its rate of answering queries. Assuming 64-
byte updates, ALLCONCUR enables the agreement among 8 servers,
each generating 100 million updates per second, in 35µs; moreover,
the agreement among 64 servers, each generating 32,000 updates
per second, takes less than 0.75ms.

Multiplayer video games are an example of applications where
the shared state satisfies two conditions—it is too large to be fre-
quently transferred through the network and it is periodically up-
dated. For example, modern video games update the state once every
50ms (i.e., 20 frames per second) by only sending changes since
the previous state [8, 9]. Thus, such applications are latency sensi-
tive [7]. To decrease latency, existing systems either limit the number
of players, e.g., ≈ 8 players in real time strategy games, or limit
the players’ view to only a subset of the state, such as the area of
interest in first person shooter games [8, 9]. ALLCONCUR allows
hundreds of servers to share a global state view at low latency; e.g.,
it supports the simultaneous interaction of 512 players, using typical
update sizes of 40 bytes [8], with an agreement latency of 38ms,
thus, enabling so called epic battles [10], while providing strong
consistency.

In addition, ALLCONCUR can handle up to 135 million (8-byte)
requests per second and achieves 17× higher throughput than Lib-
paxos [57], an implementation of Paxos [37, 38], while its average
overhead of providing fault-tolerance is 58% (§ 5).

Notation Description Notation Description
G the digraph d (G) degree
V (G) vertices D (G) diameter
E (G) directed edges πu,v path from u to v
v+ (G) successors of v k (G) vertex-connectivity
v− (G) predecessors of v Df (G, f) fault diameter

Table 1: Digraph notations.

In summary, our work makes four key contributions:

• the design of ALLCONCUR—a distributed system that pro-
vides agreement through a leaderless concurrent atomic
broadcast algorithm (§ 3);

• a proof of ALLCONCUR’s correctness (§ 3.1);
• an analysis of ALLCONCUR’s performance (§ 4);
• implementations over standard sockets-based TCP and

high-performance InfiniBand Verbs, that allows us to evalu-
ate ALLCONCUR’s performance (§ 5).

2 THE BROADCAST PROBLEM
We consider n servers connected through an overlay network, de-
scribed by a digraph G. The servers communicate through messages,
which cannot be lost (only delayed)—reliable communication. Each
server may fail according to a fail–stop model: A server either oper-
ates correctly or it fails without further influencing other servers in
the group. A server that did not fail is called non-faulty. We consider
algorithms that tolerate up to f failures, i.e., f -resilient.

In this paper, we use the notations from Chandra and Toueg [14]
to describe both reliable and atomic broadcast: m is a message
(that is uniquely identified); R-broadcast(m), R-deliver(m), A-broa-
dcast(m), A-deliver(m) are communication primitives for broadcast-
ing and delivering messages reliably (R-) or atomically (A-); and
sender (m) is the server that R- or A-broadcasts m. Note that any
messagem can be R- or A-broadcast at most once.

2.1 Reliable broadcast
Any (non-uniform) reliable broadcast algorithm must satisfy three
properties [14, 29]:

• (Validity) If a non-faulty server R-broadcasts m, then it
eventually R-deliversm.

• (Agreement) If a non-faulty server R-delivers m, then all
non-faulty servers eventually R-deliverm.

• (Integrity) For any messagem, every non-faulty server R-
delivers m at most once, and only if m was previously
R-broadcast by sender (m).

A simple reliable broadcast algorithm uses a complete digraph
for message dissemination [14]. When a server executes R-broa-
dcast(m), it sendsm to all other servers; when a server receivesm
for the first time, it executes R-deliver(m) only after sending m to
all other servers. Clearly, this algorithm solves the reliable broadcast
problem. Yet, the all-to-all overlay network is unnecessary: For
f -resilient reliable broadcast, it is sufficient to use a digraph with
vertex-connectivity larger than f .

Fault-tolerant digraphs. We define a digraph G by a set of n
vertices V (G) = {vi : 0 ≤ i ≤ n − 1} and a set of directed edges
E (G) ⊆ {(u,v) : u,v ∈ V (G) and u , v}. In the context of reliable

AllConcur: Leaderless Concurrent Atomic Broadcast HPDC ’17, June 26-30, 2017, Washington , DC, USA

broadcast, the following parameters are of interest: the degree d (G);
the diameter D (G); the vertex-connectivity k (G); and the fault diame-
ter Df (G, f). The fault diameter is the maximum diameter ofG after
removing any f < k (G) vertices [35]. Also, we refer to digraphs
with k (G) = d (G) as optimally connected [20, 47]. Finally, we use
the following additional notations: v+ (G) is the set of successors of
v ∈ V (G); v− (G) is the set of predecessors of v ∈ V (G); and πu,v
is a path between two vertices u,v ∈ V (G). Table 1 summarizes all
the digraph notations used throughout the paper.

2.2 Atomic broadcast
In addition to the reliable broadcast properties, atomic broadcast
must also satisfy the following property [14, 29]:

• (Total order) If two non-faulty servers p and q A-deliver
messages m1 and m2, then p A-delivers m1 before m2, if
and only if q A-deliversm1 beforem2.

There are different mechanisms to ensure total order [19]. A
common approach is to use a distinguished server (leader) as a
coordinator. Yet, this approach suffers from the bottleneck of a
central coordinator (§ 4.5). An alternative entails broadcast algo-
rithms that ensure atomicity through destinations agreement [19]:
All non-faulty servers agree on a message set that is A-delivered.
Destinations agreement reformulates the atomic broadcast problem
as consensus problem [6, Chapter 5]; note that consensus and atomic
broadcast are equivalent [14].

2.2.1 Lower bound. Consensus has a known synchronous
lower bound: In a synchronous round-based model [6, Chapter 2],
any f -resilient consensus algorithm requires, in the worst case, at
least f + 1 rounds. Intuitively, a server may fail after sending a mes-
sage to only one other server; this scenario may repeat up to f times,
resulting in only one server having the message; this server needs
at least one additional round to disseminate the message. For more
details, see the proof provided by Aguilera and Toueg [1]. Clearly, if
G is used for dissemination, consensus requires (in the worst case)
f + Df (G, f) rounds. To avoid assuming always the worst case, we
design an early termination scheme (§ 2.3).

2.2.2 Failure detectors. The synchronous model is unrealistic
for real-world distributed systems; more fitting is to consider an
asynchronous model. Yet, under the assumption of failures, con-
sensus (or atomic broadcast) cannot be solved in an asynchronous
model [25]: We cannot distinguish between failed and slow servers.
To overcome this, we use a failure detector (FD). FDs are distributed
oracles that provide information about faulty servers [14].

FDs have two main properties: completeness and accuracy. Com-
pleteness requires that all failures are eventually detected; accuracy
requires that no server is suspected to have failed before actually
failing. If both properties hold, then the FD is perfect (denoted by
P) [14]. In practice, completeness is easily guaranteed by a heart-
beat mechanism: Each server periodically sends heartbeats to its
successors; once it fails, its successors detect the lack of heartbeats.

Guaranteeing accuracy in asynchronous systems is impossible—
message delays are unbounded. Yet, the message delays in practical
distributed systems are bounded. Thus, accuracy can be probabilis-
tically guaranteed (§ 3.2). Also, FDs can guarantee eventual ac-
curacy—eventually, no server is suspected to have failed before

actually failing. Such FDs are known as eventually perfect (denoted
by ^P) [14]. For now, we consider an FD that can be reliably treated
as P. Later, we discuss the implications of using ^P, which can
falsely suspect servers to have failed (§ 3.3.2).

2.3 Early termination
The synchronous lower bound holds also in practice: A message
may be retransmitted by f faulty servers, before a non-faulty server
can disseminate it completely. Thus, in the worst case, any f -
resilient consensus algorithm that uses G for dissemination requires
f + Df (G, f) communication steps. Yet, the only necessary and
sufficient requirement for safe termination is for every non-faulty
server to A-deliver messages only once it has all the messages any
other non-faulty server has. Thus, early termination requires each
server to track all the messages in the system.

Early termination has two parts: (1) deciding whether a message
was A-broadcast; and (2) tracking the A-broadcast messages. In
general, deciding whether a message was A-broadcast entails waiting
for f +Df (G, f) communication steps (the worst case scenario must
be assumed for safety). This essentially eliminates any form of early
termination, if at least one server does not send a message. Yet, if
every server A-broadcasts a message2, it is a priori clear which
messages exist; thus, no server waits for non-existent messages.

Every server tracks the A-broadcast messages through the re-
ceived failure notifications. As an example, we consider a group of
nine servers that communicate via a binomial graph [5]—a general-
ization of 1-way dissemination [30]. In binomial graphs, two servers
pi and pj are connected if j = i ± 2l (modn),∀0 ≤ l ≤ ⌊log2 n⌋ (see
Figure 2a). We also consider a failure scenario in which p0 fails after
sending its messagem0 only to p1; p1 receivesm0, yet, it fails before
it can send it further. How long should another server, e.g., p6, wait
form0?

Server p6 is not directly connected to p0, so it cannot directly
detect its failure. Yet, p0’s non-faulty successors eventually detect
p0’s failure. Once they suspect p0 to have failed, they stop accepting
messages from p0; also, they R-broadcast notifications of p0’s failure.
For example, let p6 receive such a notification from p2; then, p6
knows that, if p2 did not already send m0, then p2 did not receive
m0 from p0. Clearly, both A-broadcast() and R-broadcast() use the
same paths for dissemination; the only difference between them
is the condition to deliver a message. If p2 had received m0 from
p0, then it would have sent it to p6 before sending the notification
of p0’s failure. Thus, using failure notifications, p6 can track the
dissemination of m0. Once p6 receives failure notifications from all
of p0’s and p1’s non-faulty successors, it knows that no non-faulty
server is in possession ofm0.

3 THE ALLCONCUR ALGORITHM
ALLCONCUR is a completely decentralized, f -resilient, round-based
atomic broadcast algorithm that uses a digraph G as an overlay
network. In a nutshell, in every round R, every non-faulty server
performs three tasks: (1) it A-broadcasts a single (possibly empty)
message; (2) it tracks the messages A-broadcast in R using the
early termination mechanism described in Section 2.3; and (3) once

2The message can also be empty—the server A-broadcasts the information that it has
nothing to broadcast.

HPDC ’17, June 26-30, 2017, Washington , DC, USA M. Poke, T. Hoefler, C. W. Glass

(a)

g6[p0]
server p6

tracking m0

g6[p1]
server p6

tracking m1

Tracking
digraph

p0

p1

INIT time

p1 p1
∅

(p6 stops tracking m1)

p0p0
p0 p0

p1p1
p1 p1

p2

p2

p1

p0 p3

p4 p4
p4 p4

p4

p5 p5
p5 p5

p5

p2 p3 p6

p7 p8
p7 p7

p7 p8
p8p8

p8

p7

p6

p2 p6

⟨FAIL, p0, p2⟩ ⟨FAIL, p0, p5⟩ ⟨FAIL, p1, p3⟩ ⟨BCAST, m1⟩

(b)

Figure 2: (a) A binomial graph. (b) Message tracking within a binomial graph. Messages are shown chronologically from left to right.
Dashed edges indicate failure notifications; for clarity, we omit the edges to the root of the digraphs.

done with tracking, it A-delivers—in a deterministic order—all the
messages A-broadcast in R that it received. Note that A-delivering
messages in a deterministic order entails that A-broadcast messages
do not have to be received in the same order. When a server fails, its
successors detect the failure and R-broadcast failure notifications to
the other servers; these failure notifications enable the early termi-
nation mechanism. Algorithm 1 shows the details of ALLCONCUR

during a single round. Later, we discuss the requirements of iterating
ALLCONCUR.

Initially, we make the following two assumptions: (1) the max-
imum number of failures is bounded, i.e., f < k (G); and (2) the
failures are detected by P. In this context, we prove correctness—we
show that the four properties of (non-uniform) atomic broadcast are
guaranteed (§ 3.1). Then, we provide a probabilistic analysis of accu-
racy: If the network delays can be approximated as part of a known
distribution, then we can estimate the probability of the accuracy
property to hold (§ 3.2). Finally, we discuss the consequences of
dropping the two assumptions (§ 3.3).

ALLCONCUR is message-based. Each serverpi receives messages
from its predecessors and sends messages to its successors. We
distinguish between two message types: (1) ⟨BCAST , mj ⟩, a message
A-broadcast by pj ; and (2) ⟨FAIL, pj , pk ∈ p+j (G)⟩, a notification,
R-broadcast by pk , indicating pk ’s suspicion that its predecessor
pj has failed. Note that if pi receives the notification and pk = pi ,
then it originated from pi ’s own FD. Algorithm 1 starts when at
least one server A-broadcasts a message (line 1). Every server sends
a message of its own, at the latest as a reaction upon receiving a
message.

Termination. ALLCONCUR adopts a novel early termination
mechanism (§ 2.3). To track the A-broadcast messages, each server
pi stores an array gi of n digraphs, one for each server p∗ ∈ V (G);
we refer to these as tracking digraphs. The vertices of each tracking
digraph gi[p∗] consist of the servers which (according to pi) may
havem∗. An edge (pj ,pk) ∈ E (gi[p∗]) indicates pi ’s suspicion that
pk received m∗ directly from pj . If pi has m∗, then gi[p∗] is no
longer needed; hence, pi removes all its vertices, i.e., V (gi[p∗]) = ∅.
Initially, V (gi[pj]) = {pj }, ∀pj , pi and V (gi[pi]) = ∅. Server pi
A-delivers all known messages (in a deterministic order) once all
tracking digraphs are empty (line 8).

Figure 2b illustrates the message-driven changes to the tracking
digraphs based on the binomial graph example in Section 2.3. For
clarity, we show only two of the messages being tracked by server p6
(i.e., m0 and m1); both messages are tracked by updating g6[p0] and
g6[p1], respectively. First, p6 receives from p2 a notification of p0’s
failure, which indicates that p2 has not received m0 directly from
p0 (§ 2.3). Yet, p0 may have sent m0 to its other successors; thus, p6
adds them to g6[p0]. Next, p6 receives from p5 a notification of p0’s
failure—p5 has not receivedm0 directly from p0 either and, thus, the
edge (p0,p5) is removed. Then, p6 receives from p3 a notification
of p1’s failure. Hence, p6 extends both g6[p0] and g6[p1] with p1’s
successors (except p3). In addition, due to the previous notifications
of p0’s failure, p6 extends g6[p1] with p0’s successors (except p2 and
p5). Finally, p6 receives m1; thus, it removes all the vertices from
g6[p1] (i.e., it stops trackingm1).

Receiving ⟨BCAST , mj ⟩. When receiving an A-broadcast mes-
sage mj (line 14), server pi adds it to the set Mi of known messages.
Also, it A-broadcasts its own message mi , in case it did not do so
before. Then, it continues the dissemination of each known message
through the network—pi sends all unique messages it has not already
sent to its successors p+i (G). Finally, pi removes all the vertices from
the gi[pj] digraph; then, it checks whether the termination conditions
are fulfilled.

Receiving ⟨FAIL, pj , pk ⟩. When receiving a notification, R-broad-
cast by pk , indicating pk ’s suspicion that pj has failed (line 21), pi
disseminates it further. Then, it adds a tuple (pj ,pk) to the set Fi of
received failure notifications. Finally, it updates the tracking digraphs
in gi that contain pj as a vertex.

We distinguish between two cases, depending on whether this is
the first notification of pj ’s failure received by pi . If it is the first, pi
updates all gi[p∗] containing pj as a vertex by adding pj ’s successors
(fromG) together with the corresponding edges. The rationale is, that
pj may have sentm∗ to his successors, who are now in possession of
it. Thus, we track the possible whereabouts of messages. However,
there are some exceptions: Server pk could not have received m∗
directly from pj (§ 2.3). Also, if a successor pf < V (gi[p∗]) is
added, which is already known to have failed, it may have already
received m∗ and sent it further. Hence, the successors of pf could
be in possession of m∗ and are added to gi[p∗] in the same way as
described above (line 32).

AllConcur: Leaderless Concurrent Atomic Broadcast HPDC ’17, June 26-30, 2017, Washington , DC, USA

Algorithm 1: The ALLCONCUR algorithm; code executed by
server pi ; see Table 1 for digraph notations.

Input: n; f ; G ;mi ; Mi ← ∅; Fi ← ∅;V (gi[pi]) ← ∅;V (gi[pj]) ← {pj }, ∀j , i

1 def A-broadcast(mi):
2 send ⟨BCAST, mi ⟩ to p+i (G)

3 Mi ←Mi ∪ {mi }
4 check_termination()

5 def check_termination():
6 ifV (gi[p]) = ∅, ∀p then
7 foreachm ∈ sort(Mi) do
8 A-deliver(m) // A-deliver messages

/* preparing for next round */

9 foreach server p∗ do
10 ifm∗ < Mi then
11 V (G) ← V (G) \ {p∗ } // remove servers

12 foreach (p, ps) ∈ Fi s.t. p ∈ V (G) do
13 send ⟨FAIL, p, ps ⟩ to p+i (G) // resend failures

14 receive ⟨BCAST, mj ⟩:
15 ifmi < Mi then A-broadcast(mi)
16 Mi ←Mi ∪ {mj }
17 form ∈ Mi not already sent do
18 send ⟨BCAST, m⟩ to p+i (G) // disseminate messages

19 V (gi[pj]) ← ∅
20 check_termination()

21 receive ⟨FAIL, pj , pk ∈ p
+
j (G)⟩:

/* if k = i then notification from local FD */

22 send ⟨FAIL, pj , pk ⟩ to p+i (G) // disseminate failures

23 Fi ← Fi ∪ {(pj , pk) }
24 foreach server p∗ do
25 if pj < V (gi[p∗]) then continue
26 if p+j (gi[p∗]) = ∅ then

/* maybe pj sent m∗ to someone in p+j (G) before

failing */

27 Q ← {(pj , p) : p ∈ p+j (G) \ {pk } } // FIFO queue

28 foreach (pp , p) ∈ Q do
29 Q ← Q \ {(pp , p) }
30 if p < V (gi[p∗]) then
31 V (gi[p∗]) ← V (gi[p∗]) ∪ {p }
32 if ∃(p, ∗) ∈ Fi then
33 Q ← Q ∪ {(p, ps) : ps ∈ p+ (G) } \ Fi

34 E (gi[p∗]) ← E (gi[p∗]) ∪ {(pp , p) }

35 else if pk ∈ p
+
j (gi[p∗]) then

/* pk has not received m∗ from pj */

36 E (gi[p∗]) ← E (gi[p∗]) \ {(pj , pk) }
37 foreach p ∈ V (gi[p∗]) s.t. ∄πp∗,p in gi[p∗] do
38 V (gi[p∗]) ← V (gi[p∗]) \ {p } // no input

39 if ∀p ∈ V (gi[p∗]), (p, ∗) ∈ Fi then
40 V (gi[p∗]) ← ∅ // no dissemination

41 check_termination()

If pi is already aware of pj ’s failure (i.e., the above process already
took place), the new failure notification informspi , thatpk (the origin
of the notification) has not received m∗ from pj—because pk would
have sent it before sending the failure notification. Thus, the edge
(pj , pk) can be removed from gi[p∗] (line 35).

In the end, pi prunes gi[p∗] by removing the servers no longer of
interest in tracking m∗. First, pi removes every server p for which
there is no path (in gi[p∗]) from p∗ to p, as p could not have re-
ceivedm∗ from any of the servers in gi[p∗] (line 37). Then, if gi[p∗]
contains only servers already known to have failed, pi prunes it
entirely—no non-faulty server hasm∗ (line 39).

Iterating ALLCONCUR. Executing subsequent rounds of ALL-
CONCUR requires the correct handling of failures. Since different
servers may end and begin rounds at different times, ALLCONCUR

employs a consistent mechanism of tagging servers as failed: At the
end of each round, all servers whose messages were not A-delivered
are tagged as failed by all the other servers (line 9). As every non-
faulty server agrees on the A-delivered messages, this ensures a
consistent view of failed servers. In the next round, every server re-
sends the failure notifications, except those of servers already tagged
as failed (line 12). Thus, only the tags and the necessary resends
need to be carried over from the previous round. Moreover, each
message contains the sequence number R of the round in which it
was first sent. Thus, all messages can be uniquely identified, i.e.,
⟨BCAST , mj ⟩ by (R,pj) tuples and ⟨FAIL, pj , pk ⟩ by (R,pj ,pk) tu-
ples, which allows for multiple rounds to coexist.

Initial bootstrap and dynamic membership. To bootstrap ALL-
CONCUR, we require a centralized service, such as ZooKeeper [33]:
The system must decide on the initial configuration—the identity
of the n servers, the fault tolerance f and the digraph G. Once
ALLCONCUR starts, any further reconfigurations are agreed upon
via atomic broadcast. This includes topology reconfigurations and
membership changes, i.e., servers leaving and joining the system.
In contrast to leader-based approaches, where such changes may
necessitate a leader election, in ALLCONCUR, dynamic membership
is handled directly by the algorithm.

3.1 Correctness
To prove ALLCONCUR’s correctness, we show that the four prop-
erties of (non-uniform) atomic broadcast are guaranteed (§ 2.2).
Clearly, the integrity property holds: Every server pi executes A-
deliver() only once for each message in the set Mi , which contains
only messages A-broadcast by some servers. To show that the va-
lidity property holds, it is sufficient to prove that the algorithm
terminates (see Lemma 3.5). To show that both the agreement and
the total order properties hold, it is sufficient to prove set agreement—
when the algorithm terminates, all non-faulty servers have the same
set of known messages (see Lemma 3.6). To prove termination and
set agreement, we introduce the following lemmas:

LEMMA 3.1. Let pi be a non-faulty server; let pj , pi be a
server; let πpj ,pi = (a1, . . . ,ad) be a path (in digraph G) from pj
to pi . If pj knows a message m (either its own or received), then,
pi eventually receives either ⟨BCAST , m⟩ or ⟨FAIL, ak , ak+1⟩ with
1 ≤ k < d.

PROOF. Server pj can either fail or send m to a2. Further, for
each inner server ak ∈ πpj ,pi , 1 < k < d, we distinguish three
scenarios: (1) ak fails; (2) ak detects the failure of its predecessor
on the path; or (3) ak further sends the message received from its
predecessor on the path. The message can be either ⟨BCAST , m⟩ or
⟨FAIL, al , al+1⟩ with 1 ≤ l < k. Thus, pi eventually receives either
⟨BCAST , m⟩ or ⟨FAIL, ak , ak+1⟩ with 1 ≤ k < d. Figure 3 shows,
in a tree-like fashion, what messages can be transmitted along a
three-server path. □

LEMMA 3.2. Let pi be a non-faulty server; let pj , pi be a
server. If pj knows a message m (either its own or received), then
pi eventually receives either the messagem or a notification of pj ’s
failure.

HPDC ’17, June 26-30, 2017, Washington , DC, USA M. Poke, T. Hoefler, C. W. Glass

⟨BCAST , mj ⟩
a1 ≡ pj a2

a2P

⟨BCAST , mj ⟩

⟨FAIL, pj , a2⟩

⟨FAIL, a2, pi ⟩
P

a3 ≡ pi

a3 ≡ pi

a3 ≡ pi
⟨FAIL, pj , a2⟩

a3 ≡ piP
⟨FAIL, a2, pi ⟩

Figure 3: Possible messages along a three-server path. Dotted
arrows indicate failure detection.

PROOF. If pi receives m, then the proof is done. In the case pi
does not receivem, we assume it does not receive a notification of
pj ’s failure either. Due to G’s vertex-connectivity, there are at least
k (G) vertex-disjoint paths πpj ,pi . For each of these paths, pi must
receive notifications of some inner vertex failures (cf. Lemma 3.1).
Since the paths are vertex-disjoint, each notification indicates a
different server failure. However, this contradicts the assumption
that f < k (G). □

COROLLARY 3.3. Let pi be a non-faulty server; let pj , pi be a
server. If pj receives a message, then pi eventually receives either
the same message or a notification of pj ’s failure.

LEMMA 3.4. Let pi be a server; let gi[pj] be a tracking digraph
that can no longer be pruned. If E (gi[pj]) , ∅, then pi eventually
removes an edge from E (gi[pj]).

PROOF. We assume that pi removes no edge from E (gi[pj]).
Clearly, the following statements are true: (1) V (gi[pj]) , ∅ (since
E (gi[pj]) , ∅); (2) pj ∈ V (gi[pj]) (since gi[pj] can no longer be
pruned); and (3) pj is known to have failed (since V (gi[pj]) , {pj }).
Let p ∈ V (gi[pj]) be a server such that pi receives no notification
of p’s failure. The reason p exists is twofold: (1) the maximum
number of failures is bounded; and (2) gi[pj] can no longer be
pruned (line 39). Then, we can construct a path πpj ,p = (a1, . . . ,ad)
in gi[pj] such that every server along the path, except for p, is known
to have failed (line 37). Eventually, p receives either ⟨BCAST , mj ⟩ or
⟨FAIL, ak , ak+1⟩ with 1 ≤ k < d (cf. Lemma 3.1). Since pi receives
no notification of p’s failure, the message received by p eventually
arrives at pi (cf. Corollary 3.3). On the one hand, if pi receives
⟨BCAST , mj ⟩, then all edges are removed from E (gi[pj]); this leads
to a contradiction. On the other hand, if pi receives ⟨FAIL, ak , ak+1⟩,
then the edge (ak ,ak+1) is removed from E (gi[pj]) (line 36); this
also leads to a contradiction. □

LEMMA 3.5. (Termination) Let pi be a non-faulty server. Then,
pi eventually terminates.

PROOF. If V (gi[p]) = ∅, ∀p, then the proof is done (line 6). We
assume ∃pj such that V (gi[pj]) , ∅ and gi[pj] can no longer be
pruned. Clearly, pj ∈ V (gi[pj]). Server pi receives either mj or
a notification of pj ’s failure (cf. Lemma 3.2). If pi receives mj ,
then all servers are removed from V (gi[pj]), which contradicts
V (gi[pj]) , ∅. We assume pi receives a notification of pj ’s fail-
ure; then, p+j (gi[pj]) , ∅ (since gi[pj] can no longer be pruned);
also, E (gi[pj]) , ∅. By repeatedly applying the result of Lemma 3.4,
it results that pi eventually removes all edges from gi[pj]. As a
result, gi[pj] is eventually completely pruned, which contradicts
V (gi[pj]) , ∅. □

LEMMA 3.6. (Set agreement) Let pi and pj be any two non-faulty
servers. Then, after AllConcur’s termination, Mi = Mj .

PROOF. It is sufficient to show that if m∗ ∈ Mi when pi termi-
nates, then also m∗ ∈ Mj when pj terminates. We assume that pj
does not receive m∗. Let πp∗,pi = (a1, . . . ,ad) be one of the paths
(inG) on whichm∗ arrives at pi . Let k, 1 ≤ k ≤ d the smallest index
such that pj receives no notification of ak ’s failure. The existence
of ak is given by the existence of pi , a server that is both non-
faulty and on πp∗,pi . Clearly, ak ∈ V (gj[p∗]). Since it terminates,
pj eventually removes ak from gj[p∗]. In general, pj can remove
ak when it receives either m∗ or a notification of ak ’s failure; yet,
both alternatives lead to contradictions. In addition, for k > 1, pj
can remove ak when there is no path πp∗,ak in gj[p∗]. This requires
pj to remove an edge on the (a1, . . . ,ak) path. Thus, pj receives a
message ⟨FAIL, al , al+1⟩ with 1 ≤ l < k. Yet, since al+1 received
m∗ from al , pj must receive ⟨BCAST , m∗⟩ first, which leads to a
contradiction. □

COROLLARY 3.7. AllConcur solves the atomic broadcast prob-
lem while tolerating up to f failures.

3.2 Probabilistic analysis of accuracy
Algorithm 1 assumes a perfect FD, which requires the accuracy
property to hold. Accuracy is difficult to guarantee in practice: Due
to network delays, a server may falsely suspect another server to
have failed. Yet, when the network delays can be approximated
as part of a known distribution, accuracy can be probabilistically
guaranteed. Let T be a random variable that describes the network
delays. Then, we denote by Pr[T > t] the probability that a message
delay exceeds a constant t .

We propose an FD based on a heartbeat mechanism. Every non-
faulty server sends heartbeats to its successors in G; the heartbeats
are sent periodically, with a period ∆hb. Every non-faulty server pi
waits for heartbeats from its predecessors in G; if, within a period
∆to, pi receives no heartbeats from a predecessor pj , it suspects pj
to have failed. Since we assume heartbeat messages are delayed
according to a known distribution, we can estimate the probability of
the FD to be accurate, in particular a lower bound of the probability
of the proposed FD to behave indistinguishably from a perfect one.

The interval in which pi receives two heartbeats from a predeces-
sor pj is bounded by ∆hb+T . In the interval ∆to, pj sends

⌊
∆to/∆hb

⌋
heartbeats to pi . The probability that pi does not receive the k’th
heartbeat within the period ∆to is bounded by Pr[T > ∆to − k∆hb].
For pi to incorrectly suspect pj to have failed, it has to receive none
of the k heartbeats. Moreover, pi can incorrectly suspect d (G) pre-
decessors; also, there are n servers that can incorrectly suspect their
predecessors. Thus, the probability of the accuracy property to hold

is at least (1 −
⌊∆to/∆hb ⌋∏

k=1
Pr[T > ∆to − k∆hb])n ·d (G) .

Increasing both the timeout period and the heartbeat frequency
increases the likelihood of accurate failure detection. The proba-
bility of no incorrect failure detection in the system, together with
the probability of less than k (G) failures define the reliability of
ALLCONCUR.

AllConcur: Leaderless Concurrent Atomic Broadcast HPDC ’17, June 26-30, 2017, Washington , DC, USA

3.3 Widening the scope
A practical atomic broadcast algorithm must always guarantee safety.
Under the two initial assumptions, i.e., f < k (G) and P, ALL-
CONCUR guarantees both safety and liveness (§ 3.1). In this sec-
tion, we show that f < k (G) is not required for safety, but only
for liveness (§ 3.3.1). Also, we provide a mechanism that enables
ALLCONCUR to guarantee safety even when the P assumption is
dropped (§ 3.3.2).

3.3.1 Disconnected digraph. In general, Algorithm 1 re-
quires G to be connected. A digraph can be disconnected by either
(1) removing a sufficient number of vertices to break the vertex-
connectivity, i.e., f ≥ k (G), or (2) removing sufficent edges to
break the edge-connectivity. Under the assumption of reliable com-
munication (i.e., G’s edges cannot be removed), only the fist sce-
nario is possible. If f ≥ k (G), termination is not guaranteed (see
Lemma 3.2). Yet, some servers may still terminate the round even
if G is disconnected. In this case, set agreement still holds, as the
proof of Lemma 3.6 does not assume less than k (G) failures. In
summary, the f < k (G) assumption is needed only to guarantee
liveness; safety is guaranteed regardless of the number of failures
(similar to Paxos [37, 38]).

In scenarios where G’s edges can be removed, such as network
partitioning, a non-faulty server disconnected from one of its non-
faulty successors will be falsely suspected to have failed3. Thus, the
assumption of P does not hold and we need to relax it to ^P.

3.3.2 Eventual accuracy. For some distributed systems, it
may be necessary to use ^P instead of P. For instance, in cases of
network partitioning as discussed above, or for systems in which
approximating network delays as part of a known distribution is dif-
ficult. Implementing a heartbeat-based ^P is straightforward [14]:
When a server falsely suspects another server to have failed, it in-
crements the timeout period ∆to; thus, eventually, non-faulty servers
are no longer suspected to have failed. Yet, when using ^P, failure
notifications no longer necessarily indicate server failures. Thus,
to adapt Algorithm 1 to ^P, we need to ensure the correctness of
early termination, which relies on the information carried by failure
notifications.

First, a ⟨FAIL, pj , pk ⟩ message received by pi , indicates that pk
did not receive (and it will not receive until termination) from pj any
message not yet received by pi . Thus, once a server suspects one of
its predecessors to have failed, it must ignore any subsequent mes-
sages (except failure notifications) received from that predecessor
(until the algorithm terminates). As a result, when using ^P, it is
still possible to decide if a server received a certain message.

Second, pi receiving notifications of pj ’s failure from all pj ’s
successors indicates both that pj is faulty and that it did not dis-
seminate further any message not yet received by pi . Yet, when
using ^P, these notifications no longer indicate that pj is faulty.
Thus, both pi and pj can terminate without agreeing on the same set
(i.e., Mi , Mj), which breaks ALLCONCUR’s safety. In this case
though, pi and pj are part of different strongly connected compo-
nents. For set agreement to hold (§ 3.1), only the servers from one
single strongly connected component can A-deliver messages; we

3Note that if G is disconnected by removing vertices, a non-faulty server cannot be
disconnected from its non-faulty successors.

refer to this component as the surviving partition. The other servers
are considered to be faulty (for the properties of reliable broadcast
to hold). To ensure the uniqueness of the surviving partition, it must
contain at least a majority of the servers.

Deciding whether to A-deliver. Each server decides whether it is
part of the surviving partition via a mechanism based on Kosaraju’s
algorithm to find strongly connected components [2, Chapter 6]. In
particular, once each server pi decides on the set Mi , it R-broadcasts
two messages: (1) a forward message ⟨FWD, pi ⟩; and (2) a backward
message ⟨BWD, pi ⟩. The backward message is R-broadcast using the
transpose ofG. Then, pi A-delivers the messages from Mi only when
it receives both forward and backward messages from at least ⌊n/2⌋
servers. Intuitively, a ⟨FWD, pj ⟩ message received by pi indicates
that when pj decided on its set Mj , there was at least one path
from pj to pi ; thus, pi knows of all the messages known by pj (i.e.,
Mj ⊆ Mi). Similarly, a ⟨BWD, pj ⟩ message indicates that Mi ⊆ Mj .
Thus, when pi A-delivers it knows that at least a majority of the
servers (including itself) A-deliver the same messages.

Non-terminating servers. To satisfy the properties of reliable
broadcast (§ 2.1), non-terminating servers need to be eventually re-
moved from the system and consequently, be considered as faulty. In
practice, these servers could restart after a certain period of inactivity
and then try to rejoin the system, by sending a membership request
to one of the non-faulty servers.

4 PERFORMANCE ANALYSIS
ALLCONCUR is designed as a high-throughput atomic broadcast
algorithm. Its performance is given by three metrics: (1) work per
server; (2) communication time; and (3) storage requirements. Our
analysis focuses on Algorithm 1, i.e., connected digraph and perfect
FD, and it uses the LogP model [17]. The LogP model is described
by four parameters: the latency L; the overhead o; the gap between
messages д; and the number of processes (or servers) P , which we
denote by n. We make the common assumption that o > д [4]; also,
the model assumes short messages. ALLCONCUR’s performance
depends on G’s parameters: d, D, and Df . A discussion on how to
choose G is provided in Section 4.4.

4.1 Work per server
The amount of work a server performs is given by the number of
messages it receives and sends. ALLCONCUR distinguishes between
A-broadcast messages and failure notifications. First, without fail-
ures, every server receives an A-broadcast message from all of its d
predecessors, i.e., (n − 1) · d messages received by each server. This
is consistent with the Ω(n2 f) worst-case message complexity for
synchronous f -resilient consensus algorithms [21]. Second, every
failed server is detected by up to d servers, each sending a failure
notification to its d successors. Thus, each server receives up to d2

notifications of each failure. Overall, each server receives at most
n · d + f · d2 messages. Since G is regular, each server sends the
same number of messages.

In order to terminate, in a non-failure scenario, a server needs
to receive at least (n − 1) messages and send them further to d
successors. We estimate the time of sending or receiving a message
by the overhead o of the LogP model [17]. Thus, a lower bound on
termination (due to work) is given by 2(n − 1)do.

HPDC ’17, June 26-30, 2017, Washington , DC, USA M. Poke, T. Hoefler, C. W. Glass

timep

L

doo

o

do do

L o
q ∈ p+ (G)

2do

send to p+ (G) send to p+ (G)

Figure 4: LogP model of message transmission in ALLCONCUR
for d = 3. Dashed arrows indicate already sent messages.

4.2 Communication time
In general, the time to transmit a message (between two servers) is
estimated by T (msg) = L + 2o. We consider only the scenario of a
single non-empty messagem being A-broadcast and we estimate the
time between sender (m) A-broadcastsm and A-deliversm.

4.2.1 Non-faulty scenario. We split the A-broadcast ofm in
two: (1) R-broadcast(m); and (2) the empty messagesm∅ travel back
to sender (m). In a non-failure scenario, messages are R-broadcast
in D steps, i.e., TD (msg) = T (msg)D. Moreover, to account for
contention while sending to d successors, we add to the sending
overhead the expected waiting time, i.e., os = o + d−1

2 o. Note that
for R-broadcast(m), there is no contention while receiving (every
server, except sender (m), is idle until it receivesm). Thus, the time
to R-broadcastm is estimated by TD (m) = (L + os + o)D.

When the empty messagesm∅ are transmitted to sender (m), the
servers are no longer idle; TD (m∅) needs to account for contention
while receiving. On average, servers send further one in every d
received messages; thus, a server p sends messages to the same
successor q at a period of 2do (see Figure 4). In general, once a
message arrives at a server, it needs to contend with other received
messages. Yet, servers handle incoming connections in a round-robin
fashion; processing a round of messages from all d predecessors
takes (on average) 2do, i.e., 2o per predecessor (see server p in
Figure 4). Thus, on average, the message in-rate on a connection
matches the out-rate: There is no contention while receiving empty
messages, i.e., TD (m∅) = TD (m).

4.2.2 Faulty scenario—probabilistic analysis. Let πm be
the longest path a message m has to travel before it is completely
disseminated. Ifm is lost (due to failures), πm is augmented by the
longest path the failure notifications have to travel before reaching
all non-faulty servers. Let D be a random variable that denotes
the length of the longest path πm, for any A-broadcast messagem,
i.e., D = maxm |πm |, ∀m; we refer to D as ALLCONCUR’s depth.
Intuitively, the depth is the asynchronous equivalent of the number
of rounds from synchronous systems. Thus, D ranges from D, if no
servers fail, to f + Df in the worst case scenario (§ 2.2.1). Yet, D is
not uniformly distributed. A back-of-the-envelope calculation shows
that it is very unlikely for ALLCONCUR’s depth to exceed Df .

We consider a single ALLCONCUR round, with all n servers
initially non-faulty. Also, we estimate the probability pf of a server
to fail, by using an exponential lifetime distribution model, i.e.,
over a period of time ∆, pf = 1 − e−∆/MTTF, where MTTF is the
mean time to failure. If sender (m) succeeds in sending m to all of
its successors, then D ≤ πm ≤ Df (§ 2.2.1). Thus, Pr[D ≤ D ≤
Df] = e−n ·d ·o/MTTF , where o is the sending overhead [17]. Note

that this probability increases if the round starts with previously
failed servers.

For typical values of MTTF (≈ 2 years [54]) and o (≈ 1.8µs
for TCP on our InfiniBand cluster § 5), a system of 256 servers
connected via a digraph of degree 7 (see Table 3) would finish 1
million ALLCONCUR rounds withD ≤ Df with a probability larger
than 99.99%. This demonstrates why early termination is essential for
efficiency, as for most rounds no failures occur and even if they do
occur, the probability of D > Df is very small. Note that a practical
deployment of ALLCONCUR should include regularly replacing
failed servers and/or updating G after failures.

4.2.3 Estimating the fault diameter. The fault diameter of

any digraphG is trivially bounded by
⌊
n−f −2
k (G)−f

⌋
+ 1 [15, Theorem 6].

However, this bound is neither tight nor does it relate the fault
diameter to the digraph’s diameter. In general, the fault diameter is
unbounded in terms of the digraph diameter [15]. Yet, if the first f +1
shortest vertex-disjoint paths from u to v are of length at most δf for
∀u,v ∈ V (G), then Df (G, f) ≤ δf [35]. To compute δf , we need to
solve the min-max (f + 1)-disjoint paths problem for every pair of
vertices: Find (f + 1) vertex-disjoint paths π0, . . . ,πf that minimize
the length of the longest path; hence, δf = maxi |πi |, 0 ≤ i ≤ f .

Unfortunately, the problem is known to be strongly NP-com-
plete [41]. As a heuristic to find δf , we minimize the sum of the
lengths instead of the maximum length, i.e., the min-sum disjoint
paths problem. This problem can be expressed as a minimum-cost
flow problem; thus, it can be solved polynomially with well known al-
gorithms, e.g., successive shortest path [3, Chapter 9]. Let π̂0, . . . , π̂f
be the paths obtained from solving the min-sum disjoint paths prob-
lem; also, let δ̂f = maxi |π̂i |, 0 ≤ i ≤ f . Then, from the minimality
condition of both min-max and min-sum problems, we deduce the
following chain of inequalities:

f∑
i=0
|π̂i |

f + 1
≤

f∑
i=0
|πi |

f + 1
≤ δf ≤ δ̂f . (1)

Thus, we approximate the fault diameter bound by δ̂f . Then, we use
Equation (1) to check the accuracy of our approximation: We check
the difference between the maximum and the average length of the
paths obtained from solving the tractable min-sum problem.

As an example, we consider the binomial graph example from [5],
i.e., n = 12 and p+i = p−i =

{
pj : j = i ± {1, 2, 4}

}
. The graph has

connectivity k = 6 and diameter D = 2. After solving the min-sum
problem, we can estimate the fault diameter bound, i.e., 3 ≤ δf ≤ 4.
After a closer look, we can see that one of the six vertex-disjoint
paths from p0 to p3 has length four, i.e., p0 − p10 − p6 − p5 − p3.

4.3 Storage requirements
Each server pi stores five data structures (see Algorithm 1): (1) the
digraph G; (2) the set of known messages Mi ; (3) the set of received
failure notifications Fi ; (4) the array of tracking digraphs gi; and
(5) the internal FIFO queue Q . Table 2 shows the space complexity
of each data structure. In general, for regular digraphs, pi needs to
store d edges per node; yet, some digraphs require less storage, e.g.,
binomial graphs [5] require only the graph size. Also, each tracking
digraph has at most f d vertices; yet, only f of these digraphs may

AllConcur: Leaderless Concurrent Atomic Broadcast HPDC ’17, June 26-30, 2017, Washington , DC, USA

Notation Description Space complexity per server
G digraph O (n · d)
Mi messages O (n)
Fi failure notifications O (f · d)
gi tracking digraphs O (f 2 · d)
Q FIFO queue O (f · d)

Table 2: Space complexity per server for data structures used
by Algorithm 1. The space complexity for G holds for regular
digraphs, such as GS (n,d) § 4.4.

6−nines

0

5

10

15

20

23 25 27 29 211 213 215

Graph size (n)

R
el

ia
bi

lit
y

(k
−

ni
ne

s) Binomial graph
GS(n,d) digraph

Figure 5: ALLCONCUR’s reliability estimated over a period of
24 hours and a server MTTF ≈ 2 years.

have more than one vertex. The space complexity of the other data
structures is straightforward (see Table 2).

4.4 Choosing the digraph G
ALLCONCUR’s performance depends on the parameters of G—
degree, diameter, and fault diameter. Binomial graphs have both
diameter and fault diameter lower than other commonly used graphs,
such as the binary Hypercube [5]. Also, they are optimally con-
nected, hence, offering optimal work for the provided connectivity.
Yet, their connectivity depends on the number of vertices, which
reduces their flexibility: Binomial graphs provide either too much or
not enough connectivity.

We estimate ALLCONCUR’s reliability by ρG =
∑k (G)−1
i=0 C (n, i) ·

pif (1 − pf)
n−i , with pf = 1 − e−

∆
MTTF the probability of a server to

fail over a period of time ∆ (§ 4.2.2). Figure 5 plots this reliability
as a function of n. For a reliability target of 6-nines, we can see that
the binomial graph offers either too much reliability, resulting in
unnecessary work, or not sufficient reliability.

As an alternative, ALLCONCUR uses GS (n,d) digraphs, for any
d ≥ 3 and n ≥ 2d [58]. In a nutshell, the construction of GS (n,d)
entails constructing the line digraph of a generalized de Bruijn di-
graph [23] with the self-loops replaced by cycles. A more detailed
description that follows the steps provided in the original paper [58]
is available in an extendend technical report [53]. Similarly to bino-
mial graphs [5],GS (n,d) digraphs are optimally connected. Contrary
to binomial graphs though, they can be adapted to various reliability
targets (see Figure 5 for a reliability target of 6-nines). Moreover,
GS (n,d) digraphs have a quasiminimal diameter for n ≤ d3 + d:
The diameter is at most one larger than the lower bound obtained
from the Moore bound, i.e., DL(n,d) = ⌈logd (n(d − 1) + d)⌉ − 1.
In addition, GS (n,d) digraphs have low fault diameter bounds (ex-
perimentally verified). Table 3 shows the parameters of GS (n,d) for
different number of vertices and 6-nines reliability; the reliability is
estimated over a period of 24 hours according to the data from the

GS (n, d) D DL(n, d) GS (n, d) D DL(n, d)
GS (6, 3) 2 2 GS (64, 5) 4 3
GS (8, 3) 2 2 GS (90, 5) 3 3
GS (11, 3) 3 2 GS (128, 5) 4 3
GS (16, 4) 2 2 GS (256, 7) 4 3
GS (22, 4) 3 3 GS (512, 8) 3 3
GS (32, 4) 3 3 GS (1024, 11) 4 3
GS (45, 4) 4 3

Table 3: The parameters—vertex count n, degree d and diam-
eter D—of GS (n,d) for 6-nines reliability (estimated over a pe-
riod of 24 hours and a server MTTF ≈ 2 years). The lower bound
for the diameter is DL(n,d) = ⌈logd (n(d − 1) + d)⌉ − 1.

TSUBAME2.5 system failure history [28, 54], i.e., server MTTF ≈ 2
years.

4.5 AllConcur vs. leader-based agreement
For a theoretical comparison to leader-based agreement, we consider
the following deployment: a leader-based group, such as Paxos,
that enables the agreement among n servers, i.e., clients in Paxos
terminology (see Figure 1a). The group size does not depend on
n, but only on the reliability of the group members. Also, all the
servers interact directly with the leader. In principle, the leader can
disseminate state updates via a tree [32]; yet, for fault-tolerance,
a reliable broadcast algorithm [12] is needed. To the best of our
knowledge, there is no implementation of leader-based agreement
that uses reliable broadcast for dissemination.

In general, in such a leader-based deployment, not all servers
need to send a message. This is an advantage over ALLCONCUR,
where the early termination mechanism requires every server to send
a message. Yet, for the typical scenarios targeted by ALLCONCUR—
the data to be agreed upon is well balanced—we can realistically
assume that all servers have a message to send.

Trade-off between work and total message count. The work
require for reaching agreement in a leader-based deployment is un-
balanced. On the one hand, every server sends one message and
receives n − 1 messages, resulting in O (n) work. On the other hand,
the leader requires quadratic work, i.e., O (n2): it receives one mes-
sage from every server and it sends every received message to all
servers. Note that every message is also replicated, adding a constant
amount of work per message.

To avoid overloading a single server (i.e., the leader), ALLCON-
CUR distributes the work evenly among all servers—every server
performs O (nd) work (§ 4.1). This decrease in complexity comes
at the cost of introducing more messages to the network. A leader-
based deployment introduces n(n − 1) messages to the network (not
counting the messages needed for replication). In ALLCONCUR,
every message is sent d times; thus, the total number of messages in
the network is n2d.

Removing and adding servers. For both ALLCONCUR and
leader-based agreement, the cost of intentionally removing and
adding servers can be hidden by using a two-phase approach similar
to the transitional configuration in Raft [51]. Thus, we focus only
on the cost of unintentionally removing a server—a server failure.
Also, we consider a worst-case analysis—we compare the impact of
a leader failure to that of a ALLCONCUR server. The consequence

HPDC ’17, June 26-30, 2017, Washington , DC, USA M. Poke, T. Hoefler, C. W. Glass

of a leader failure is threefold: (1) every server receives one failure
notification; (2) a leader election is triggered; and (3) the new leader
needs to reestablish the connections to the n servers. Note that the
cost of reestablishing the connection can be hidden if the servers
connect from the start to all members of the group. In ALLCONCUR,
there is no need for leader election. A server failure causes every
server to receive up to d2 failure notifications (§ 4.1). Also, the depth
may increase (§ 4.2.2).

Redundancy. The amount of redundancy (i.e., d) needed by ALL-
CONCUR is given by the reliability of the agreeing servers. Thus, d
can be seen as a performance penalty for requiring a certain level of
reliability. Using more reliable hardware increases ALLCONCUR’s
performance. In contrast, in a leader-based deployment, more reli-
able hardware increases only the performance of message replication
(i.e., less replicas are needed), leaving both the quadratic work and
the quadratic total message count unchanged.

5 EVALUATION
We evaluate ALLCONCUR on two production systems: (1) an In-
finiBand cluster with 96 nodes; and (2) the Hazel Hen Cray XC40
system (7712 nodes). We refer to the two systems as IB-hsw and
XC40, respectively. On both systems, each node has 128GB of phys-
ical memory and two Intel Xeon E5-2680v3 12-core CPUs with a
base frequency of 2.5GHz. The IB-hsw system nodes are connected
through a Voltair 4036 Fabric (40Gbps); each node uses a single
Mellanox ConnectX-3 QDR adapter (40GBps). Moreover, each node
is running ScientificLinux version 6.4. The XC40 system nodes are
connected through the Cray Aries network.

We implemented ALLCONCUR4 in C; the implementation relies
on libev, a high-performance event loop library. Each instance of
ALLCONCUR is deployed on a single physical node. The nodes com-
municate via either standard sockets-based TCP or high-performance
InfiniBand Verbs (IBV); we refer to the two variants as ALLCON-
CUR-TCP and ALLCONCUR-IBV, respectively. On the IB-hsw sys-
tem, to take advantage of the high-performance network, we use
TCP/IP over InfiniBand (“IP over IB”) for ALLCONCUR-TCP. The
failure detector is implemented over unreliable datagrams. To com-
pile the code, we use GCC version 5.2.0 on the IB-hsw system and
Cray Programming Environment 5.2.82 on the XC40 system.

We evaluate ALLCONCUR through a set of benchmarks that em-
ulate representative real-world applications. During the evaluation,
we focus on two common performance metrics: (1) the agreement
latency, i.e., the time needed to reach agreement; and (2) the agree-
ment throughput, i.e., the amount of data agreed upon per second.
In addition, we introduce the aggregated throughput, a performance
metric defined as the agreement throughput times the number of
servers. Also, all the experiments assume a perfect FD.

In the following benchmarks, the servers are interconnected via
GS (n,d) digraphs (see Table 3). If not specified otherwise, each
server generates requests at a certain rate. The requests are buffered
until the current agreement round is completed; then, they are packed
into a message that is A-broadcast in the next round. All the figures

4Source code: https://github.com/mpoke/allconcur/commit/
c09dee8f8f186ee7b2d4fdb23e682016eb3dbde8

●
●

●
●

● ●
●

●
●

10µs

30µs

100µs

300µs

1ms

3ms

6 8 11 16 22 32 45 64 90
Number of servers

A
gr

ee
m

en
t l

at
en

cy

●●● Median latency
Work (LogP)
Depth (LogP)

(a) ALLCONCUR-IBV [IB-hsw]

●
● ●

●
●

●
●

●
●

10µs

30µs

100µs

300µs

1ms

3ms

6 8 11 16 22 32 45 64 90
Number of servers

A
gr

ee
m

en
t l

at
en

cy

●●● Median latency
Work (LogP)
Depth (LogP)

(b) ALLCONCUR-TCP [IB-hsw]

Figure 6: Agreement latency for a single (64-byte) request. The
LogP parameters are L = 1.25µs and o = 0.38µs over IBV and
L = 12µs and o = 1.8µs over TCP.

F J F F J J F F F J J J
 0M

 2M

 4M

 6M

0 20 40 60
Time [sec]

A
gr

ee
m

en
t t

hr
ou

gh
pu

t
(a) ALLCONCUR-IBV [IB-hsw]

 0K

150K

300K

450K

0 20 40 60
Time [sec]

A
gr

ee
m

en
t t

hr
ou

gh
pu

t

(b) Zoom-in of (a)

Figure 7: Agreement throughput during membership changes—
servers failing, indicated by F, and servers joining, indicated by
J. Deployment over 32 servers, each generating 10,000 (64-byte)
requests per second. The FD has ∆hb = 10ms and ∆to = 100ms.
The spikes in throughput are due to the accumulated requests
during unavailability periods.

report both the median and the 95% nonparametric confidence in-
terval around it [31]. Moreover, for each figure, the system used to
obtain the measurements is specified in square brackets.

Single request agreement. To evaluate the LogP models de-
scribed in Section 4, we consider a benchmark where the servers
agree on one single request. Clearly, such a scenario is not the
intended use case of ALLCONCUR, as all servers, except one, A-
broadcast empty messages. Figure 6 plots the agreement latency
as a function of system size for both ALLCONCUR-IBV and ALL-
CONCUR-TCP on the IB-hsw system and it compares it with the
LogP models for both work and depth (§ 4). The LogP parameters
for the IB-hsw system are L = 1.25µs and o = 0.38µs over IBV and
L = 12µs and o = 1.8µs over TCP. The models are good indicators of
ALLCONCUR’s performance; e.g., with increasing the system size,
work becomes dominant.

Membership changes. To evaluate the effect of membership
changes on performance, we deploy ALLCONCUR-IBV on the IB-
hsw system. In particular, we consider 32 servers each generating
10,000 (64-byte) requests per second. Servers rely on a heartbeat-
based FD with a heartbeat period ∆hb = 10ms and a timeout period
∆to = 100ms. Figure 7 shows ALLCONCUR’s agreement throughput
(binned into 10ms intervals) during a series of events, i.e., servers
failing, indicated by F, and servers joining, indicated by J. Initially,
one server fails, causing a period of unavailability (≈ 190ms); this is
followed by a rise in throughput, due to the accumulated requests
(see Figure 7a). Shortly after, the system stabilizes, but at a lower
throughput since one server is missing. Next, a server joins the

https://github.com/mpoke/allconcur/commit/c09dee8f8f186ee7b2d4fdb23e682016eb3dbde8
https://github.com/mpoke/allconcur/commit/c09dee8f8f186ee7b2d4fdb23e682016eb3dbde8

AllConcur: Leaderless Concurrent Atomic Broadcast HPDC ’17, June 26-30, 2017, Washington , DC, USA

●●●●●●●●●

●●●●●●

10µs

100µs

1ms

10ms

100M10M1M100K10K1K10010
Request count [/server /second]

A
gr

ee
m

en
t l

at
en

cy

● n=8 n=16 n=32 n=64

(a) ALLCONCUR-IBV [IB-hsw]

●●●●●
●●●●●●

●●●●

10µs

100µs

1ms

10ms

100M10M1M100K10K1K10010
Request count [/server /second]

A
gr

ee
m

en
t l

at
en

cy

● n=8 n=16 n=32 n=64

(b) ALLCONCUR-TCP [IB-hsw]

50ms (20 frames per second)

●

●
●

●

●

●

●

●

100µs

300µs

1ms

3ms

10ms

30ms

100ms

300ms

23 24 25 26 27 28 29 210

Number of players

A
gr

ee
m

en
t l

at
en

cy

Actions per minute (APM)
● 200 400

(c) ALLCONCUR-TCP [XC40]

Figure 8: (a),(b) Constant (64-byte) request rate per server. (c) Agreement latency in multiplayer video games for different APM and
40-byte requests.

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●

● ●
●

0

3

6

9

12

27 28 29 210 211 212 213 214 215

Batching factor [# (8−byte) requests]

A
gr

ee
m

en
t t

hr
ou

gh
pu

t [
G

bp
s]

●

●

n=8
n=16
n=32
n=64

n=128
n=256
n=512
n=1024

(a) MPI_Allgather [TCP / XC40]

●
●

●

●

●

●
● ●

●

● ● ● ● ● ● ● ● ●
0

3

6

9

12

27 28 29 210 211 212 213 214 215

Batching factor [# (8−byte) requests]

A
gr

ee
m

en
t t

hr
ou

gh
pu

t [
G

bp
s]

●

●

n=8
n=16
n=32
n=64

n=128
n=256
n=512
n=1024

(b) ALLCONCUR-TCP [XC40]

●

●

●
●

● ●
●

●
●

● ● ● ● ● ● ● ● ●0

0.1

0.2

0.3

0.4

0.5

27 28 29 210 211 212 213 214 215

Batching factor [# (8−byte) requests]
A

gr
ee

m
en

t t
hr

ou
gh

pu
t [

G
bp

s]

●

●

n=8
n=16
n=32
n=64

n=128
n=256
n=512
n=1024

(c) Libpaxos [TCP / XC40]

● ● ● ● ● ● ● ● ●●
●

●

●

●

●
●

● ●

0

200

400

600

800

1000

27 28 29 210 211 212 213 214 215

Batching factor [# (8−byte) requests]

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 [G

bp
s]

●

●

n=8
n=16
n=32
n=64

n=128
n=256
n=512
n=1024

(d) ALLCONCUR-TCP [XC40]

Figure 9: (a) Unreliable agreement vs. (b) ALLCONCUR vs. (c) leader-based agreement—batching factor effect on the agreement
throughput. (d) Batching factor effect on the aggregated throughput.

system causing another period of unavailability (≈ 80ms) followed
by another rise in throughput. Similarly, this scenario repeats for two
and three subsequent failures5. Note that both unavailability periods
can be reduced. First, by improving the FD implementation, ∆to
can be significantly decreased [22]. Second, new servers can join
the system as non-participating members until they established all
necessary connections [51].

Travel reservation systems. In this scenario, each server’s rate
of generating requests is bounded by its rate of answering queries.
We consider a benchmark where 64-byte requests are generated
with a constant rate per server r . Since the batching factor (i.e.,
the amount of requests packed into a message) is not bounded,
the system becomes unstable once the rate of generating requests
exceeds the agreement throughput; this leads to a cycle of larger
messages, leading to longer times, leading to larger messages etc. A
practical deployment would bound the message size and reduce the
inflow of requests. Figures 8a and 8b plot the agreement latency as a
function of r ; the measurements were obtained on the IB-hsw system.
By using ALLCONCUR-IBV, 8 servers, each generating 100 million
requests per second, reach agreement in 35µs; while 64 servers, each
generating 32,000 requests per second, reach agreement in less than
0.75ms. ALLCONCUR-TCP has ≈ 3× higher latency.

Multiplayer video games. In this scenario, the state is updated
periodically, e.g., once every 50ms in multiplayer video games [8, 9];
thus, such systems are latency sensitive. Moreover, similarly to travel
reservation systems, each server’s rate of generating requests is
bounded; e.g., in multiplayer video games, each player performs a
limited number of actions per minute (APM), i.e., usually 200 APM,

5The GS (32, 4) has vertex-connectivity four; thus, in general, it cannot safely sustain
more than three failures

although expert players can exceed 400 APM [40]. To emulate such
a scenario, we deploy ALLCONCUR on the XC40 system; although
not designed for video games, the system enables large-scale de-
ployments. Figure 8c plots the agreement latency as a function of
the number of players, for 200 and 400 APM. Each action causes a
state update with a typical size of 40 bytes [8]. ALLCONCUR-TCP
supports the simultaneous interaction among 512 players with an
agreement latency of 28ms for 200 APM and 38ms for 400 APM.
Thus, ALLCONCUR enables so called epic battles [10].

ALLCONCUR vs. unreliable agreement. To evaluate the over-
head of providing fault-tolerance, we compare ALLCONCUR to
an implementation of unreliable agreement. In particular, we use
MPI_Allgather [49] to disseminate all messages to every server.
We consider a benchmark where every server delivers a fixed-size
message per round (fixed number of requests). Figures 9a and 9b
plot the agreement throughput as a function of the batching factor.
The measurements were obtained on the XC40 system; for a fair
comparison, we used Open MPI [26] over TCP to run the benchmark.
ALLCONCUR provides a reliability target of 6-nines with an average
overhead of 58%. Moreover, for messages of at least 2, 048 (8-byte)
requests, the overhead does not exceed 75%.

ALLCONCUR vs. leader-based agreement. We conclude ALL-
CONCUR’s evaluation by comparing it to Libpaxos [57], an open-
source implementation of Paxos [37, 38] over TCP. In particular, we
use Libpaxos as the leader-based group in the deployment described
in Section 4.5. The size of the Paxos group is five, sufficient for
our reliability target of 6-nines. We consider the same benchmark
used to compare to unreliable agreement—each server A-delivers a
fixed-size message per round. Figures 9b and 9c plot the agreement
throughput as a function of the batching factor; the measurements

HPDC ’17, June 26-30, 2017, Washington , DC, USA M. Poke, T. Hoefler, C. W. Glass

were obtained on the XC40 system. The throughput peaks at a cer-
tain message size, indicating the optimal batching factor to be used.
ALLCONCUR-TCP reaches an agreement throughput of 8.6Gbps,
equivalent to ≈ 135 million (8-byte) requests per second (see Fig-
ures 9b). As compared to Libpaxos, ALLCONCUR achieves at least
17× higher throughput (see Figure 9c). The drop in throughput (after
reaching the peak), for both ALLCONCUR and Libpaxos, is due to
the TCP congestion control mechanism.

ALLCONCUR’s agreement throughput decreases with increas-
ing the number of servers. The reason for this performance drop is
twofold. First, to maintain the same reliability, more servers entail
a higher degree for G (see Table 3), hence, more redundancy. Sec-
ond, agreement among more servers entails more synchronization.
Yet, the number of agreeing servers is an input parameter. Thus, a
better metric to measure ALLCONCUR’s actual performance is the
aggregated throughput. Figure 9d plots the aggregated throughput
corresponding to the agreement throughput from Figures 9b. ALL-
CONCUR-TCP’s aggregated throughput increases with the number
of servers and it peaks at ≈ 750Gbps for 512 and 1,024 servers.

6 RELATED WORK
Many existing algorithms and systems can be used to implement
atomic broadcast; we discuss here only the most relevant subset.
Défago, Schiper, and Urbán provide a general overview of atomic
broadcast algorithms [19]. They define a classification based on
how total order is established: by the sender, by a sequencer or by
the destinations [14]. ALLCONCUR uses destinations agreement to
achieve total order, i.e., agreement on a message set. Yet, unlike
other destinations agreement algorithms, ALLCONCUR is entirely
decentralized and requires no leader.

Lamport’s classic Paxos algorithm [37, 38] is often used to im-
plement atomic broadcast. Several practical systems have been pro-
posed [11, 16, 34, 45]. Also, a series of optimizations were proposed,
such as distributing the load among all servers or out-of-order pro-
cessing of not-interfering requests [39, 44, 48]. Yet, the commonly
employed simple replication scheme is not designed to scale to
hundreds of instances.

State machine replication protocols are similar to Paxos but often
claim to be simpler to understand and implement. Practical imple-
mentations include ZooKeeper [33], Viewstamped Replication [43],
Raft [51], Chubby [13] and DARE [52] among others. These sys-
tems commonly employ a leader-based approach which makes them
fundamentally unscalable. Increasing scalability comes often at the
cost of relaxing the consistency model [18, 42]. Moreover, even
when scalable strong consistency is provided [27], these systems
aim to increase data reliability, an objective conceptually different
than distributed agreement.

Bitcoin [50] offers an alternative solution to the (Byzantine fault-
tolerant) atomic broadcast problem: It uses proof-of-work to order
the transactions on a distributed ledger. In a nutshell, a server must
solve a cryptographic puzzle in order to add a block of transactions to
the ledger. Yet, Bitcoin does not guarantee consensus finality [60]—
multiple servers solving the puzzle may lead to a fork (conflict),
resulting in branches. Forks are eventually solved by adding new
blocks. Eventually one branch outpaces the others, thereby becoming
the ledger all servers agree upon. To avoid frequent forks, Bitcoin

controls the expected puzzle solution time to 10 minutes and cur-
rently limits the block size to 1MB, resulting in limited performance,
i.e., around seven transactions per second. To increase performance,
Bitcoin-NG [24] uses proof-of-work to elect a leader that can add
blocks until a new leader is elected. Yet, conflicts are still possible
and consensus finality is not ensured.

7 CONCLUSION
In this paper we present ALLCONCUR: a distributed agreement sys-
tem that relies on a novel leaderless atomic broadcast algorithm.
ALLCONCUR uses a digraph G as overlay network; thus, the fault-
tolerance f is given by G’s vertex-connectivity k (G) and can be
adapted freely to the system specific requirements. We show that
ALLCONCUR achieves competitive latency and throughput for two
real-world scenarios. In comparison to Libpaxos, ALLCONCUR

achieves at least 17× higher throughput for the considered sce-
nario. We prove ALLCONCUR’s correctness under two assumptions—
f < k (G) and a perfect failure detector. Moreover, we show that if
f ≥ k (G), ALLCONCUR still guarantees safety, and we discuss the
changes necessary to maintain safety when relaxing the assumption
of a perfect failure detector.

In summary, ALLCONCUR is highly competitive and, due to its
decentralized approach, enables hitherto unattainable system designs
in a variety of fields.

ACKNOWLEDGMENTS
This work was supported by the German Research Foundation (DFG)
as part of the Cluster of Excellence in Simulation Technology (EXC
310/2) at the University of Stuttgart. We thank Michael Resch for
support; our shepherd Samer Al Kiswany and the anonymous re-
viewers; Nitin H. Vaidya, José Gracia and Daniel Rubio Bonilla for
helpful discussions; and Holger Berger for providing support with
the InfiniBand machine.

REFERENCES
[1] Marcos Kawazoe Aguilera and Sam Toueg. 1999. A simple bivalency proof that

t-resilient consensus requires t+1 rounds. Inform. Process. Lett. 71, 3 (1999), 155
– 158. https://doi.org/10.1016/S0020-0190(99)00100-3

[2] Alfred V. Aho, John E. Hopcroft, and Jeffrey Ullman. 1983. Data Structures and
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[3] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. 1993. Network
Flows: Theory, Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA.

[4] Albert Alexandrov, Mihai F. Ionescu, Klaus E. Schauser, and Chris Scheiman.
1995. LogGP: Incorporating Long Messages into the LogP Model—One Step
Closer Towards a Realistic Model for Parallel Computation. In Proc. 7th Annual
ACM Symposium on Parallel Algorithms and Architectures (SPAA ’95). Santa
Barbara, CA, USA. https://doi.org/10.1145/215399.215427

[5] Thara Angskun, George Bosilca, and Jack Dongarra. 2007. Binomial Graph: A
Scalable and Fault-tolerant Logical Network Topology. In Proc. 5th International
Conference on Parallel and Distributed Processing and Applications (ISPA’07).
Niagara Falls, Canada. https://doi.org/10.1007/978-3-540-74742-0_43

[6] Hagit Attiya and Jennifer Welch. 2004. Distributed Computing: Fundamentals,
Simulations and Advanced Topics. John Wiley & Sons.

[7] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu,
and Mark Claypool. 2004. The Effects of Loss and Latency on User Performance
in Unreal Tournament 2003®. In Proc. ACM SIGCOMM Workshop on Network
and System Support for Games (NetGames ’04). Portland, OR, USA. https:
//doi.org/10.1145/1016540.1016556

[8] Ashwin Bharambe, John R. Douceur, Jacob R. Lorch, Thomas Moscibroda, Jeffrey
Pang, Srinivasan Seshan, and Xinyu Zhuang. 2008. Donnybrook: Enabling
Large-scale, High-speed, Peer-to-peer Games. In Proc. ACM SIGCOMM 2008
Conference on Data Communication (SIGCOMM ’08). Seattle, WA, USA. https:
//doi.org/10.1145/1402958.1403002

https://doi.org/10.1016/S0020-0190(99)00100-3
https://doi.org/10.1145/215399.215427
https://doi.org/10.1007/978-3-540-74742-0_43
https://doi.org/10.1145/1016540.1016556
https://doi.org/10.1145/1016540.1016556
https://doi.org/10.1145/1402958.1403002
https://doi.org/10.1145/1402958.1403002

AllConcur: Leaderless Concurrent Atomic Broadcast HPDC ’17, June 26-30, 2017, Washington , DC, USA

[9] Ashwin Bharambe, Jeffrey Pang, and Srinivasan Seshan. 2006. Colyseus: A
Distributed Architecture for Online Multiplayer Games. In Proc. 3rd Conference
on Networked Systems Design & Implementation (NSDI’06). San Jose, CA, USA.
http://dl.acm.org/citation.cfm?id=1267680.1267692

[10] Blizzard Entertainment. 2008. WoW PvP battlegrounds. (2008). http://www.
worldofwarcraft.com/pvp/battlegrounds.

[11] Romain Boichat, Partha Dutta, Svend Frolund, and Rachid Guerraoui. 2003.
Reconstructing Paxos. SIGACT News 34(2) (2003).

[12] Darius Buntinas. 2012. Scalable Distributed Consensus to Support MPI Fault
Tolerance. In Proc. 2012 IEEE 26th International Parallel and Distributed Pro-
cessing Symposium (IPDPS’12). Shanghai, China. https://doi.org/10.1109/IPDPS.
2012.113

[13] Mike Burrows. 2006. The Chubby Lock Service for Loosely-coupled Distributed
Systems. In Proc. 7th Symposium on Operating Systems Design and Implementa-
tion (OSDI ’06). Seattle, WA, USA. http://dl.acm.org/citation.cfm?id=1298455.
1298487

[14] Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable Failure Detectors
for Reliable Distributed Systems. J. ACM 43, 2 (March 1996), 225–267. https:
//doi.org/10.1145/226643.226647

[15] F. R. K. Chung and M. R. Garey. 1984. Diameter bounds for altered graphs.
Journal of Graph Theory 8, 4 (December 1984), 511–534. https://doi.org/10.
1002/jgt.3190080408

[16] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Ka nthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2012. Spanner: Google’s Globally-distributed
Database. In Proc. 10th USENIX Conference on Operating Systems Design and
Implementation (OSDI’12). Hollywood, CA, USA. http://dl.acm.org/citation.
cfm?id=2387880.2387905

[17] David Culler, Richard Karp, David Patterson, Abhijit Sahay, Klaus Erik Schauser,
Eunice Santos, Ramesh Subramonian, and Thorsten von Eicken. 1993. LogP:
Towards a Realistic Model of Parallel Computation. SIGPLAN Not. 28, 7 (July
1993), 1–12. https://doi.org/10.1145/173284.155333

[18] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. 2007. Dynamo: Amazon’s Highly Available Key-value Store.
SIGOPS Oper. Syst. Rev. 41, 6 (December 2007), 205–220. https://doi.org/10.
1145/1323293.1294281

[19] Xavier Défago, André Schiper, and Péter Urbán. 2004. Total Order Broadcast
and Multicast Algorithms: Taxonomy and Survey. ACM Comput. Surv. 36, 4
(December 2004), 372–421. https://doi.org/10.1145/1041680.1041682

[20] Anthony H. Dekker and Bernard D. Colbert. 2004. Network Robustness and
Graph Topology. In Proc. 27th Australasian Conference on Computer Science -
Volume 26 (ACSC ’04). Dunedin, New Zealand. http://dl.acm.org/citation.cfm?
id=979922.979965

[21] Danny Dolev and Christoph Lenzen. 2013. Early-deciding Consensus is Ex-
pensive. In Proc. 2013 ACM Symposium on Principles of Distributed Comput-
ing (PODC ’13). Montréal, Québec, Canada. https://doi.org/10.1145/2484239.
2484269

[22] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No Com-
promises: Distributed Transactions with Consistency, Availability, and Perfor-
mance. In Proc. 25th Symposium on Operating Systems Principles (SOSP ’15).
Monterey, CA, USA. https://doi.org/10.1145/2815400.2815425

[23] D. Z. Du and F. K. Hwang. 1988. Generalized De Bruijn Digraphs. Netw. 18, 1
(March 1988), 27–38. https://doi.org/10.1002/net.3230180105

[24] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. 2016.
Bitcoin-NG: A Scalable Blockchain Protocol. In Proc. 13th Usenix Conference on
Networked Systems Design and Implementation (NSDI’16). Santa Clara, CA, USA.
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal

[25] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility
of Distributed Consensus with One Faulty Process. J. ACM 32, 2 (April 1985),
374–382. https://doi.org/10.1145/3149.214121

[26] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-
garra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and
Timothy S. Woodall. 2004. Open MPI: Goals, Concept, and Design of a Next
Generation MPI Implementation. In Proc. 11th European PVM/MPI Users’ Group
Meeting. Budapest, Hungary. https://doi.org/10.1007/978-3-540-30218-6_19

[27] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas An-
derson. 2011. Scalable Consistency in Scatter. In Proc. 23rd ACM Sympo-
sium on Operating Systems Principles (SOSP ’11). Cascais, Portugal. https:
//doi.org/10.1145/2043556.2043559

[28] Global Scientific Information and Computing Center. 2014. Failure History
of TSUBAME2.0 and TSUBAME2.5. (2014). http://mon.g.gsic.titech.ac.jp/

trouble-list/index.htm.
[29] Vassos Hadzilacos and Sam Toueg. 1994. A Modular Approach to Fault-Tolerant

Broadcasts and Related Problems. Technical Report. Ithaca, NY, USA.
[30] Debra Hensgen, Raphael Finkel, and Udi Manber. 1988. Two Algorithms for

Barrier Synchronization. Int. J. Parallel Program. 17, 1 (February 1988), 1–17.
https://doi.org/10.1007/BF01379320

[31] Torsten Hoefler and Roberto Belli. 2015. Scientific Benchmarking of Paral-
lel Computing Systems: Twelve Ways to Tell the Masses when Reporting Per-
formance Results. In Proc. International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’15). Austin, TX, USA.
https://doi.org/10.1145/2807591.2807644

[32] Torsten Hoefler and Dmitry Moor. 2014. Energy, Memory, and Runtime Tradeoffs
for Implementing Collective Communication Operations. Supercomput. Front.
Innov.: Int. J. 1, 2 (July 2014), 58–75. https://doi.org/10.14529/jsfi140204

[33] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proc. 2010
USENIX Annual Technical Conference (ATC’10). Boston, MA, USA. http://dl.
acm.org/citation.cfm?id=1855840.1855851

[34] Jonathan Kirsch and Yair Amir. 2008. Paxos for System Builders: An Overview. In
Proc. 2nd Workshop on Large-Scale Distributed Systems and Middleware (LADIS
’08). Yorktown Heights, NY, USA. https://doi.org/10.1145/1529974.1529979

[35] M. S. Krishnamoorthy and B. Krishnamurthy. 1987. Fault Diameter of Inter-
connection Networks. Comput. Math. Appl. 13, 5-6 (April 1987), 577–582.
https://doi.org/10.1016/0898-1221(87)90085-X

[36] Leslie Lamport. 1978. The implementation of reliable distributed multiprocess
systems. Computer Networks (1976) 2, 2 (May 1978), 95 – 114. https://doi.org/
10.1016/0376-5075(78)90045-4

[37] Leslie Lamport. 1998. The Part-time Parliament. ACM Trans. Comput. Syst. 16,
2 (May 1998), 133–169. https://doi.org/10.1145/279227.279229

[38] Leslie Lamport. 2001. Paxos Made Simple. SIGACT News 32, 4 (December
2001), 51–58. https://doi.org/10.1145/568425.568433

[39] Leslie Lamport. 2005. Generalized Consensus and Paxos. Tech-
nical Report. https://www.microsoft.com/en-us/research/publication/
generalized-consensus-and-paxos/

[40] Joshua M Lewis, Patrick Trinh, and David Kirsh. 2011. A Corpus Analysis
of Strategy Video Game Play in Starcraft: Brood War. In Proc. 33rd Annual
Conference of the Cognitive Science Society. Austin, TX, USA.

[41] Chung-Lun Li, Thomas S. McCormick, and David Simich-Levi. 1990. The
Complexity of Finding Two Disjoint Paths with Min-max Objective Function.
Discrete Appl. Math. 26, 1 (January 1990), 105–115. https://doi.org/10.1016/
0166-218X(90)90024-7

[42] Tonglin Li, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao, Ke Wang, Anu-
pam Rajendran, Zhao Zhang, and Ioan Raicu. 2013. ZHT: A Light-Weight
Reliable Persistent Dynamic Scalable Zero-Hop Distributed Hash Table. In Proc.
2013 IEEE 27th International Symposium on Parallel and Distributed Processing
(IPDPS ’13). Boston, MA, USA. https://doi.org/10.1109/IPDPS.2013.110

[43] Barbara Liskov and James Cowling. 2012. Viewstamped Replication Revisited.
Technical Report MIT-CSAIL-TR-2012-021. MIT.

[44] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius: Building
Efficient Replicated State Machines for WANs. In Proc. 8th USENIX Conference
on Operating Systems Design and Implementation (OSDI’08). San Diego, CA,
USA. http://dl.acm.org/citation.cfm?id=1855741.1855767

[45] Parisa Jalili Marandi, Marco Primi, and Fernando Pedone. 2012. Multi-Ring
Paxos. In Proc. 42nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN ’12). Boston, MA, USA. https://doi.org/10.1109/
DSN.2012.6263916

[46] Mesosphere. 2017. DC/OS. (2017). https://docs.mesosphere.com/overview/.
[47] F. J. Meyer and D. K. Pradhan. 1988. Flip-Trees: Fault-Tolerant Graphs with

Wide Containers. IEEE Trans. Comput. 37, 4 (April 1988), 472–478. https:
//doi.org/10.1109/12.2194

[48] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is
More Consensus in Egalitarian Parliaments. In Proc. 24th ACM Symposium on
Operating Systems Principles (SOSP ’13). Farminton, PA, USA. https://doi.org/
10.1145/2517349.2517350

[49] MPI Forum. 2015. MPI: A Message-Passing Interface Standard Version 3.1. (June
2015). http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

[50] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. (2008).
http://bitcoin.org/bitcoin.pdf.

[51] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In Proc. 2014 USENIX Annual Technical Conference
(ATC’14). Philadelphia, PA, USA. https://www.usenix.org/conference/atc14/
technical-sessions/presentation/ongaro

[52] Marius Poke and Torsten Hoefler. 2015. DARE: High-Performance State Machine
Replication on RDMA Networks. In Proc. 24th International Symposium on
High-Performance Parallel and Distributed Computing (HPDC ’15). Portland,
OR, USA. https://doi.org/10.1145/2749246.2749267

http://dl.acm.org/citation.cfm?id=1267680.1267692
http://www.worldofwarcraft.com/pvp/battlegrounds
http://www.worldofwarcraft.com/pvp/battlegrounds
https://doi.org/10.1109/IPDPS.2012.113
https://doi.org/10.1109/IPDPS.2012.113
http://dl.acm.org/citation.cfm?id=1298455.1298487
http://dl.acm.org/citation.cfm?id=1298455.1298487
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://doi.org/10.1002/jgt.3190080408
https://doi.org/10.1002/jgt.3190080408
http://dl.acm.org/citation.cfm?id=2387880.2387905
http://dl.acm.org/citation.cfm?id=2387880.2387905
https://doi.org/10.1145/173284.155333
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/1323293.1294281
https://doi.org/10.1145/1041680.1041682
http://dl.acm.org/citation.cfm?id=979922.979965
http://dl.acm.org/citation.cfm?id=979922.979965
https://doi.org/10.1145/2484239.2484269
https://doi.org/10.1145/2484239.2484269
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.1002/net.3230180105
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/eyal
https://doi.org/10.1145/3149.214121
https://doi.org/10.1007/978-3-540-30218-6_19
https://doi.org/10.1145/2043556.2043559
https://doi.org/10.1145/2043556.2043559
http://mon.g.gsic.titech.ac.jp/trouble-list/index.htm
http://mon.g.gsic.titech.ac.jp/trouble-list/index.htm
https://doi.org/10.1007/BF01379320
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.14529/jsfi140204
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
https://doi.org/10.1145/1529974.1529979
https://doi.org/10.1016/0898-1221(87)90085-X
https://doi.org/10.1016/0376-5075(78)90045-4
https://doi.org/10.1016/0376-5075(78)90045-4
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/568425.568433
https://www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/
https://www.microsoft.com/en-us/research/publication/generalized-consensus-and-paxos/
https://doi.org/10.1016/0166-218X(90)90024-7
https://doi.org/10.1016/0166-218X(90)90024-7
https://doi.org/10.1109/IPDPS.2013.110
http://dl.acm.org/citation.cfm?id=1855741.1855767
https://doi.org/10.1109/DSN.2012.6263916
https://doi.org/10.1109/DSN.2012.6263916
https://docs.mesosphere.com/overview/
https://doi.org/10.1109/12.2194
https://doi.org/10.1109/12.2194
https://doi.org/10.1145/2517349.2517350
https://doi.org/10.1145/2517349.2517350
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://bitcoin.org/bitcoin.pdf
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1145/2749246.2749267

HPDC ’17, June 26-30, 2017, Washington , DC, USA M. Poke, T. Hoefler, C. W. Glass

[53] Marius Poke, Torsten Hoefler, and Colin W. Glass. 2016. AllConcur: Leaderless
Concurrent Atomic Broadcast (Extended Version). CoRR abs/1608.05866 (2016).
http://arxiv.org/abs/1608.05866

[54] Kento Sato, Naoya Maruyama, Kathryn Mohror, Adam Moody, Todd Gamblin,
Bronis R. de Supinski, and Satoshi Matsuoka. 2012. Design and Modeling of a
Non-blocking Checkpointing System. In Proc. International Conference on High
Performance Computing, Networking, Storage and Analysis (SC ’12). Salt Lake
City, UT, USA. https://doi.org/10.1109/SC.2012.46

[55] Fred B. Schneider. 1990. Implementing Fault-tolerant Services Using the State
Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (December 1990),
299–319. https://doi.org/10.1145/98163.98167

[56] Adrian Schüpbach, Simon Peter, Andrew Baumann, Timothy Roscoe, Paul
Barham, Tim Harris, and Rebecca Isaacs. 2008. Embracing diversity in the
Barrelfish manycore operating system. In Proc. Workshop on Managed Many-
Core Systems. Boston, MA, USA. https://www.microsoft.com/en-us/research/
publication/embracing-diversity-in-the-barrelfish-manycore-operating-system/

[57] Daniele Sciascia. 2013. Libpaxos3. (2013). http://libpaxos.sourceforge.net/
paxos_projects.php.

[58] Terunao Soneoka, Makoto Imase, and Yoshifumi Manabe. 1996. Design of a d-
connected digraph with a minimum number of edges and a quasiminimal diameter
II. Discrete Appl. Math. 64, 3 (February 1996), 267–279. https://doi.org/10.1016/
0166-218X(94)00113-R

[59] Philipp Unterbrunner, Gustavo Alonso, and Donald Kossmann. 2014. High
Availability, Elasticity, and Strong Consistency for Massively Parallel Scans
over Relational Data. The VLDB Journal 23, 4 (August 2014), 627–652. https:
//doi.org/10.1007/s00778-013-0343-9

[60] Marko Vukolić. 2016. The Quest for Scalable Blockchain Fabric: Proof-of-
Work vs. BFT Replication. In Proc. IFIP WG 11.4 Workshop on Open Research
Problems in Network Security (iNetSec’15). Zurich, Switzerland. https://doi.org/
10.1007/978-3-319-39028-4_9

http://arxiv.org/abs/1608.05866
https://doi.org/10.1109/SC.2012.46
https://doi.org/10.1145/98163.98167
https://www.microsoft.com/en-us/research/publication/embracing-diversity-in-the-barrelfish-manycore-operating-system/
https://www.microsoft.com/en-us/research/publication/embracing-diversity-in-the-barrelfish-manycore-operating-system/
http://libpaxos.sourceforge.net/paxos_projects.php
http://libpaxos.sourceforge.net/paxos_projects.php
https://doi.org/10.1016/0166-218X(94)00113-R
https://doi.org/10.1016/0166-218X(94)00113-R
https://doi.org/10.1007/s00778-013-0343-9
https://doi.org/10.1007/s00778-013-0343-9
https://doi.org/10.1007/978-3-319-39028-4_9
https://doi.org/10.1007/978-3-319-39028-4_9

	Abstract
	1 Introduction
	1.1 Applications and summary of results

	2 The broadcast problem
	2.1 Reliable broadcast
	2.2 Atomic broadcast
	2.3 Early termination

	3 The AllConcur algorithm
	3.1 Correctness
	3.2 Probabilistic analysis of accuracy
	3.3 Widening the scope

	4 Performance analysis
	4.1 Work per server
	4.2 Communication time
	4.3 Storage requirements
	4.4 Choosing the digraph G
	4.5 AllConcur vs. leader-based agreement

	5 Evaluation
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

