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ABSTRACT
The computational efficiency of a state of the art ab initio quantum
transport (QT) solver, capable of revealing the coupled electro-
thermal properties of atomically-resolved nano-transistors, has
been improved by up to two orders of magnitude through a data cen-
tric reorganization of the application. The approach yields coarse-
and fine-grained data-movement characteristics that can be used
for performance and communication modeling, communication-
avoidance, and dataflow transformations. The resulting code has
been tuned for two top-6 hybrid supercomputers, reaching a sus-
tained performance of 85.45 Pflop/s on 4,560 nodes of Summit
(42.55% of the peak) in double precision, and 90.89 Pflop/s in mixed
precision. These computational achievements enable the restruc-
tured QT simulator to treat realistic nanoelectronic devices made
of more than 10,000 atoms within a 14× shorter duration than the
original code needs to handle a system with 1,000 atoms, on the
same number of CPUs/GPUs and with the same physical accuracy.
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1 JUSTIFICATION FOR PRIZE
Record ab initio dissipative quantum transport simulation in devices
made of ≥10,000 atoms (10× improvement w.r.t. state-of-the-art).
Double precision performance of 85.45 Pflop/s on 4,560 nodes of
Summit (27,360 GPUs), and mixed precision of 90.89 Pflop/s. Reduc-
tion in time-to-solution per atom and communication volume by a
factor of up to 140 and 136, respectively.
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2 PERFORMANCE ATTRIBUTES

Performance attribute Our submission

Category of achievement Scalability, time-to-solution
Type of method used Non-linear system of equations
Results reported on basis of Whole application including I/O
Precision reported Double precision, Mixed precision
System scale Measured on full-scale
Measurements Timers, FLOP count, performance

modeling

3 OVERVIEW OF THE PROBLEM
Much of human technological development and scientific advances
in the last decades have been driven by increases in computational
power. The cost-neutral growth provided by Moore’s scaling law is
however coming to an end, threatening to stall progress in strategic
fields ranging from scientific simulations and bioinformatics to
machine learning and the Internet-of-Things. All these areas share
an insatiable need for compute power, which in turn drives much
of their innovation. Future improvement of these fields, and science
in general, will depend on overcoming fundamental technology
barriers, one of which is the soon-to-become unmanageable heat
dissipation in compute units.
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Figure 1: Self-heating effect simulation in a Silicon FinFET.
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Heat dissipation in microchips reached alarming peak values of
100 W/cm2 already in 2006 [20, 28]. This led to the end of Dennard
scaling and the beginning of the “multicore crisis”, an era with
energy-efficient parallel, but sequentially slower multicore CPUs.
Now, more than ten years later, average power densities of up to 30
W/cm2, about four times more than hot plates, are commonplace
in modern high-performance CPUs, putting thermal management
at the center of attention of circuit designers [19]. By scaling the
dimensions of transistors more rapidly than their supply voltage,
the semiconductor industry has kept increasing heat dissipation
from one generation of microprocessors to the other. In this con-
text, large-scale data and supercomputing centers are facing critical
challenges regarding the design and cost of their cooling infrastruc-
tures. The price to pay for that has become exorbitant, as the cooling
can consume up to 40% of the total electricity in data centers; a
cumulative cost of many billion dollars per year.

Landauer’s theoretical limit of energy consumption for non-
reversible computing offers a glimmer of hope: today’s processing
units require orders of magnitude more energy than the kBT ln 2
Joule bound to (irreversibly) change one single bit. However, to ap-
proach this limit, it will be necessary to first properly understand the
mechanisms behind nanoscale heat dissipation in semiconductor
devices [20]. Fin field-effect transistors (FinFETs), as schematized
in Fig. 1(a-c), build the core of all recent integrated circuits (ICs).
Their dimensions do not exceed 100 nanometers along all directions,
even 10 nm along one of them (widthW ), with an active region
composed of fewer than 1 million atoms. This makes them subject
to strong quantum mechanical and peculiar thermal effects.

When a voltage Vds is applied across FinFETs, electrons start to
flow from the source to the drain contact, giving rise to an electrical
current whose magnitude depends on the gate bias Vдs . The poten-
tial difference between source and drain allows electrons to transfer
part of their energy to the crystal lattice surrounding them. This
energy is converted into atomic vibrations, called phonons, that can
propagate throughout FinFETs. The more atoms vibrate, the “hot-
ter” a device becomes. This phenomenon, known as self- or Joule-
heating, plays a detrimental role in today’s transistor technologies
and has consequences up to the system level. It is illustrated in
Fig. 1(d) (§ 8.1 for details about this simulation): a strong increase of
the lattice temperature can be observed close to the drain contact
of the simulated FinFET. The negative influence of self-heating on
CPU/GPU performance can be minimized by devising computer-
assisted strategies to efficiently evacuate the generated heat from
the active region of transistors.

3.1 Physical Model
Due to the large height/width ratio of FinFETs, heat generation and
dissipation can be physically captured in a two-dimensional simula-
tion domain comprising 10-15 thousand atoms and corresponding
to a slice in the x-y plane. The height, aligned with the z-axis (see
Fig. 1(a-b)), can be treated as a periodic dimension and represented
by a momentum vector kz or qz in the range [−π , π ]. The tiny
width (W ≤7 nm) and length L ≤100 nm) of such FinFETs require
atomistic Quantum Transport (QT) simulation to accurately model
and analyze their electro-thermal properties. In this framework,

Electrons 𝑮𝑮 𝑬𝑬,𝒌𝒌𝒛𝒛 Phonons 𝑫𝑫 𝝎𝝎,𝒒𝒒𝒛𝒛
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Figure 2: Self-consistent coupling between the GF and SSE
phases (kernels) as part of the NEGF formalism.

electron and phonon (thermal) currents as well as their interactions
are evaluated by taking quantum mechanics into account.

The Non-equilibrium Green’s Function (NEGF) formalism [5]
combined with density functional theory (DFT) [12] lends itself
optimally to this type of calculations including electron and phonon
transport and thus to the investigation of self-heating in arbitrary
device geometries. With the help of DFT, an ab initio method, any
material (combination) can be handled at the atomic level without
the need for empirical parameters.

The DFT+NEGF equations for electron and phonon transport
take the form of a non-linear system of equations, as depicted
in Fig. 2. The electron (G(E,kz )) and phonon (D(ω,qz )) Green’s
Functions (GF) at energy E, momentum kz /qz , and frequency ω
are coupled to each other through scattering self-energies (SSE)
Σ(E,kz ) and Π(ω,qz ) that depend on [G(E ± ℏω,kz −qz ) D(ω,qz )]
and [G(E,kz ) G(E + ℏω,kz + qz )], respectively.

The electron and phonon Green’s Functions are solved for all
possible electron energy (NE ) and momentum (Nkz ) points as well
as all phonon frequencies (Nω ) and momentum (Nqz ). In case of
self-heating, the difficulty does not come from the solution of the
GF equations, which are independent from each other and have re-
ceived a wide attention before [2, 14], but from the fact that the scat-
tering self-energies Σ and Π connect different energy-momentum
(E, kz ) and frequency-momentum (ω, qz ) pairs together.

To obtain the electrical and energy currents or the temperature
distribution (see Fig. 1(d)) of a given device, the non-linear GF
and SSE equations must be iteratively solved until convergence is
reached. Depending on the geometry and bias conditions, between
Niter=20 and 100 iterations are needed for that. The algorithm
starts by setting Σ(E,kz )=Π(ω,qz )=0 and continues by computing
all GFs under this condition. The latter then serve as inputs to the
next phase, where the SSE are evaluated for all (E, kz ) and (ω, qz ).

3.2 Computational Challenges
An intuitive algorithm to practically solve the GF+SSE system on su-
percomputers consists of two loops: one over the momentum points
(kz /qz ) and another one over the electron energies (E). This loop
schedule results in complex execution dependencies and commu-
nication patterns. The communication overhead quickly becomes
a bottleneck with increasing number of atoms and computational
resources, crossing the petabyte range per iteration for realistic
transistor sizes (§ 6.1.2). Therefore, current simulations are limited
to the order of 1,000 atoms, a value much below what is needed to
apply QT simulations in practical applications.
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Table 1: State of the Art Quantum Transport Simulators

Name Maximum # of Computed Atoms Scalability

Tight-binding-like∗ DFT Max. Cores Using

GF †
e GF †

ph GF + SSE GF †
e GF †

ph GF + SSE (Magnitude) GPUs

GOLLUM [8] 1k 1k — 100 100 — N/A ✗

Kwant [10] 10k — — — — — N/A ✗

NanoTCAD ViDES [17] 10k — — — — — N/A ✗

QuantumATK [24] 10k 10k — 1k 1k — 1k ✗

TB_sim [9] 100k — 10k‡ 1k — — 10k ✓

NEMO5 [11] 100k 100k 10k‡ — — — 100k ✓

OMEN [15] 100k (1.44 Pflop/s [14]) 100k 10k 10k (15 Pflop/s [2]) 10k 1k (0.16 Pflop/s) 100k ✓

This work N/A N/A N/A 10k 10k 10k (85.45 Pflop/s) 1M ✓
∗ : including Maximally-Localized Wannier Functions (MLWF), †: Ballistic, ‡: Simplified.

Even in a scenario where each node operates at maximum com-
putational efficiency, large-scale QT simulations are bound by both
communication volume and memory requirements. The former
inhibits strong scaling, as simulation time includes nanostructure-
dependent point-to-point communication patterns, which become
infeasible when increasing node count. The memory bottleneck
is a direct result of the former. It hinders large simulations due to
the increased memory requirements w.r.t. atom count. Transform-
ing the QT simulation algorithm to minimize communication is
thus the key to simultaneously model larger devices and increase
scalability on different supercomputers.

4 CURRENT STATE OF THE ART
Quantum transport simulation is an important driver of innovation
in nanoelectronics. Thus, many atomistic quantum transport simu-
lators that can model the characteristics of nano-devices have been
developed [8–11, 15, 17, 24]. Their performance is summarized in
Table 1, where their estimated maximum number of atoms that can
be simulated for a given physical model is provided. Only orders
of magnitude are shown, as these quantities depend on the device
geometries and band-structure method. It should be mentioned
that most tools are limited to tight-binding-like (TB) Hamiltonians,
because they are computationally cheaper than DFT ones (less or-
bitals and neighbors per atom). This explains the larger systems
that can be treated with TB. However, such approaches are not ac-
curate enough when it comes to the exploration of material stacks,
amorphous layers, metallic contacts, or interfaces as needed in tran-
sistor design. In these cases, the higher accuracy of DFT is required
and leads to a much higher computational cost.

When it comes to the modeling of self-heating at the ab initio
level, the following NEGF equations must be solved for electrons:{ (

E · S(kz ) − H(kz ) − ΣR (E,kz )
)
· GR (E,kz ) = I

G≷(E,kz ) = GR (E,kz ) · Σ≷(E,kz ) · GA(E,kz ).
(1)

In Eq. (1), S(kz ) and H(kz ) are the kz -dependent overlap and Hamil-
tonian matrices, respectively. Theymust be produced by a DFT code
with a localized basis set (here: CP2K [27]) and have a sizeNa×Norb
(Na : total number of atoms,Norb : number of orbitals per atom). The
G(E,kz ) electron GFs have the same size as S/H and I, the identity
matrix. They can be either retarded (R), advanced (A), lesser (<), or

greater (>). The same notation applies to the self-energies Σ(E,kz )
that include a boundary and scattering (superscript S) term.

To handle phonon transport, a similar GF system of equations
must be processed: the electron energy E is replaced by the square of
the phonon frequency ω2, the HamiltonianH (kz ) by the dynamical
matrix Φ(qz ), and S(kz ) by the identity matrix I with Norb=N3D=3,
the three axes along which crystals can vibrate.

Eq. (1) and its phonon equivalent can be solved with a so-called
recursive Green’s Function (RGF) algorithm [23]. All matrices (H , S ,
and Φ) are block-tri-diagonal and can be divided into bnum blocks
with Na

bnum atoms each, if the structure is homogeneous, as here.
RGF then performs a forward/backward pass over the bnum blocks.
It has been demonstrated that converting selected operations of RGF
to single-precision typically leads to inaccurate results [14].

The electron (ΣS ) and phonon (ΠS ) scattering self-energies (less-
er and greater components) can be written as follows [22]:

Σ≷S
aa (E , kz ) = i

∑
qz i jl

∫
dℏω
2π

[
∇iHab · G≷

bb (E − ℏω , kz − qz )·

∇jHba ·

(
D≷i j
ba (ω , qz ) − D≷i j

bb (ω , qz )−

D≷i j
aa (ω , qz ) + D≷i j

ab (ω , qz )
)]

, (2)

Π≷S
ab (ω , qz ) = −i

∑
kz l

∫
dE
2π

tr
{
∇iHla · G≷

aa (E + ℏω , kz + qz )·

∇jHal · G≶
l l (E , kz )

}
. (3)

In Eq. (3), the sum over l is replaced by l=b, if a=b. All Green’s
Functions Gab (Dab ) are matrices of size Norb ×Norb (N3D ×N3D ).
They describe the coupling between two neighbor atoms a and b
at positions Ra and Rb . Each atom has Nb neighbors. The term
∇iHab is the derivative of the Hab Hamiltonian coupling atoms a
and b. It is computed with DFT. Only the diagonal blocks of ΣR≷,S

and Nb non-diagonal blocks of ΠR≷,S are considered.
The evaluation of Eqs. (2-3) does not require the knowledge

of all entries of the G and D matrices, but of two 5-D tensors
of shape [Nkz ,NE ,Na,Norb ,Norb ] for electrons and two 6-D ten-
sors of shape [Nqz ,Nω ,Na,Nb + 1,N3D ,N3D ] for phonons. Each
[kz , E,Na,Norb ,Norb ] and [qz ,ω,Na,Nb + 1,N3D , N3D ] combina-
tion is produced independently from the other by solving the GF
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D Data: Array containersT

c = a * b Tasklet: Fine-grained computations
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State: Control dependencies

Map: Parametric parallelism scopes…

Figure 3: Stateful Dataflow Multigraph (SDFG) concepts.

equations with RGF. The electron and phonon SSE can also be re-
shaped into multi-dimensional tensors with the same dimensions as
their GF counterparts, but they cannot be computed independently
due to energy, frequency, and momentum coupling.

To the best of our knowledge, the only tool that can solve Eqs. (1)
to (3) self-consistently, in structures composed of thousands of
atoms, at the DFT level is OMEN [15], a two-time Gordon Bell
Prize finalist [2, 14].1 The application is written in C++, contains
90,000 lines of code in total, and uses MPI as its communication
protocol. Some parts of it have been ported to GPUs using the
CUDA language and take advantage of libraries such as cuBLAS,
cuSPARSE, and MAGMA. The electron-phonon scattering model
was first implemented based on the tight-binding method and a
three-level MPI distribution of the workload (momentum, energy,
and spatial domain decomposition). A first release of the model
with equilibrium phonon (ΠS=0) was validated up to 95k cores for
a device with Na=5,402, Nb=4, Norb=10, Nkz=21, and NE=1,130.
These runs showed that the application can reach a parallel ef-
ficiency of 57%, when going from 3,276 up to 95,256 cores, with
the SSE phase consuming from 25% to 50% of the total simulation
times. The reason for the increase in SSE time could be attributed
to the communication time required to gather all Green’s Function
inputs for Eq. (2), which grew from 16 to 48% of the total simulation
time [13] as the number of cores went from 3,276 to 95,256.

After extending the electron-phonon scattering model to DFT
and adding phonon transport to it, it has been observed that the time
spent in the SSE phase (communication and computation) explodes.
Even for a small structure with Na=2,112, Norb=4, Nkz=Nqz=11,
NE=650, Nω=30, and Nb=13, 95% of the total simulation time is
dedicated to SSE, regardless of the number of used cores/nodes,
among which ∼60% for the communication between the different
MPI tasks. The relevance of this model is therefore limited.

Understanding realistic FinFET transistors requires sim-
ulations with Na ≥ 10, 000 atoms and high accuracy (NkZ>20,
NE>1, 000, see Table 2). In order to achieve a reasonable cost (time,
money, and energy), the algorithms to solve Eqs. (1) to (3) must be
drastically improved. The required algorithmic improvements
needed are at least one order of magnitude in the number of
atoms and two orders of magnitude in computational time
per atom. In the following sections, we demonstrate how both can
be achieved with a novel data-centric view of the simulation.

1Previous achievements: development of parallel algorithms to deal with ballistic
transport (Eq. (1) alone) expressed in a tight-binding (SC11) or DFT (SC15) basis.
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Figure 4: SDFG of the entire simulation.

5 INNOVATIONS REALIZED
The discussed self-heating effects have formed the landscape of cur-
rent HPC systems, which consist of new architectures attempting
to work around the physical constraints. Thus, no two cluster sys-
tems are the same and heterogeneity is commonplace. Each setup
requires careful tuning of application performance, focused mostly
on data movement, which causes the lion’s share of energy dissipa-
tion [26]. As this kind of tuning demands in-depth knowledge of
the hardware, it is typically performed by a Performance Engineer,
a developer who is versed in intricate system details, existing high-
performance libraries, and capable of modeling performance and
setting up optimized procedures independently. This role, which
complements the Domain Scientist, has been increasingly impor-
tant in scientific computing for the past three decades, but is now
essential for any application beyond straightforward linear algebra
to operate at extreme scales. Until now, both Domain Scientists
and Performance Engineers would work with one code-base. This
creates a co-dependent situation [18], where the original domain
code is tuned to a point that modifying the algorithm or transform-
ing its behavior is difficult to one without the presence of the other,
even if data locality or computational semantics are not changed.

We propose a paradigm change by rewriting the quantum trans-
port problem as implemented in OMEN from a data-centric perspec-
tive. We show that the key to eliminating the scaling bottleneck is in
formulating a communication-avoiding algorithm, which is tightly
coupled with recovering local and global data dependencies of the
application. We start from a reference Python implementation, us-
ing Data-Centric (DaCe) Parallel Programming [1] to express the
computations separately from data movement (Fig. 3). DaCe auto-
matically constructs a stateful dataflow view (Fig. 4) that can be
used to optimize data movement without modifying the original
computation. This enables both rethinking the communication pat-
tern of the simulation, and tuning the data movement for each
target supercomputer. In the remainder of this paper, the new code
is referred to as DaCe OMEN or simply DaCe.

We report the following innovations, most of them being directly
obtained as a result of the data-centric view:

• Data Ingestion: We stage the material and use chunked
broadcast to deliver it to nodes. This reduced Piz Daint start-
up time at full-scale from ∼30 minutes to under two.

• Load Balancing: Similar to OMEN, we divide work among
electrons and phonons unevenly, so as to reduce imbalance.
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Table 2: Requirements for Accurate
Dissipative DFT+NEGF Simulations

Variable Description Value

Nkz /Nqz Number of electron/phonon
momentum points

≥21

NE Number of energy points ≥1,000
Nω Number of phonon frequen-

cies
≥50

Na Total number of atoms per
device structure

≥10,000

Nb Neighbors considered for
each atom

≥30

Norb Number of orbitals per atom ≥10
N3D Degrees of freedom for crys-

tal vibrations
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Figure 5: Domain decomposition of SSE in OMEN and DaCe.

• Communication Avoidance: We reformulate communica-
tion in a non-natural way from a physics perspective, leading
to two orders of magnitude reduction in volume.

• Boundary Conditions: We pipeline contour integral calcu-
lation on the GPUs, computing concurrently and accumulat-
ing resulting matrices using on-GPU reduction.

• SparsityUtilization:We tune and investigate different data-
centric transformations on sparse Hamiltonian blocks in GF,
using a combination of sparse and dense matrices.

• Pipelining: The DaCe framework automatically generates
copy/compute and compute/compute overlap, resulting in
60 auto-generated CUDA streams.

• Computational Innovations: We reformulate SSE compu-
tations using data-centric transformations. Using fission and
data layout transformations, we reshape the job into a stencil-
like strided-batched GEMM operation, where the DaCe im-
plementation yields up to 4.8× speedup over cuBLAS.

The full implementation details and transformations are de-
scribed by Ziogas et al. [30]. Below, we highlight the innovations
that led to the most significant performance improvements.

5.1 Data-Centric Parallel Programming
Communication-Avoiding (CA) algorithms [3, 6] are defined as al-
gorithm variants and schedules (orders of operations) that minimize
the total number of performed memory loads and stores, achieving
lower bounds in some cases. To achieve such bounds, a subset of
those algorithms is matrix-free2. A key requirement in modifying
an algorithm to achieve communication avoidance is to explicitly
formulate its data movement characteristics. The schedule can then
be changed by reorganizing the data flow to minimize the sum of
accesses in the algorithm. Recovering a data-centric view of an
algorithm, which makes movement explicit throughout all levels
(from a single core to the entire cluster), is thus the path forward in
scaling up the creation of CA variants to more complex algorithms
and multi-level memory hierarchies as one.

DaCe defines a development workflow where the original al-
gorithm is independent from its data movement representation,

2The term is derived from solvers that do not need to store the entire matrix in memory.

enabling symbolic analysis and transformation of the latter without
modifying the scientific code. This way, a CA variant can be formu-
lated and developed by a performance engineer, while the original
algorithm retains readability and maintainability. At the core of the
DaCe implementation is the Stateful DataFlow multiGraph (SDFG)
[1], an intermediate representation that encapsulates data move-
ment and can be generated from high-level code in Python. The
syntax (node and edge types) of SDFGs is listed in Fig. 3.

The workflow is as follows: The domain scientist designs an
algorithm and implements it with linear algebra operations (impos-
ing dataflow implicitly), or with Memlets and Tasklets (specifying
dataflow explicitly). The Memlet edges define all data movement,
which is seen in the input and output of each Tasklet, but also enter-
ing and leavingMaps with their overall requirements and total num-
ber of accesses. This implementation is then parsed into an SDFG,
on which performance engineers may apply graph transformations
to improve data locality. After transformation, the optimized SDFG
is compiled to machine code for performance evaluation. It may
be further transformed interactively and tuned for different tar-
get platforms and memory hierarchy characteristics. The SDFG
representation allows the performance engineer to add local ar-
rays, reshape and nest Maps (e.g., to impose a tiled schedule), fuse
scopes, map computations to accelerators (GPUs, FPGAs), and other
transformations that may modify the overall number of accesses.

The top-level view of the simulation (Fig. 4) shows that it iterates
over two states, GF and SSE. The former computes the boundary
conditions, cast them into self-energies, solve for the Green’s Func-
tions, and extract physical observables (current, density) from them.
The state consists of two concurrent Maps, one for the electrons
and one for the phonons (§ 3.1). The SSE state computes the scat-
tering self-energies Σ≷ and Π≷. At this point, we opt to represent
the RGF solvers and SSE kernel as Tasklets, i.e., collapsing their
dataflow, so as to focus on high-level aspects of the algorithm. This
view indicates that the RGF solver cannot compute the Green’s
Functions for a specific atom separately from the rest of the mate-
rial (operating on all atoms for a specific energy-momentum pair),
and that SSE outputs the contribution of a specific (kz , E,qz ,ω,a,b)
point to Σ≷ and Π≷. These contributions are then accumulated
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Figure 6: Transforming the dataflow of SSE using SDFGs.

to the output tensors, as indicated by the dotted Memlet edges.
The accumulation is considered associative; therefore the map can
compute all dimensions of the inputs and outputs in parallel.

Below we show how the data-centric view is used to identify
and implement a tensor-free CA variant of OMEN, achieving near
optimal communication for the first time in this scientific domain.

5.2 Communication Avoidance
Figure 5 describes the domain decomposition of SSE computation in
OMEN and the DaCe variant, while relevant parameters are given
in Table 2. The main part of the computation uses a complex stencil
pattern (bottom left of figure) to update 3-D tensors (black cube).
In the 2-D stencil, neighboring tensors (grey boxes) are multiplied
and accumulated over one full dimension (Nkz ) and one with a
radius of Nω tensors on each side. The domain scientists who first
implemented OMEN naturally decomposed the 6D loop nest along
the first two dimensions into a kz × E/tE process grid of energy-
momentum pairs (middle part of the figure). In the data-centric view,
this original decomposition is expressed as a tiling transformation of
the SDFG, where the outermost (top) map controls process mapping.
Through sophisticated use of MPI communicators (grouped by rank
brightness in the figure) and collectives, OMEN can use broadcast
and reduction operations to distribute the data across nodes.

Upon inspecting data movement in the SDFG Memlets, this de-
composition yields full data dependencies (Fig. 5, top) and a multi-
plicative expression for the number of accesses (bottom of figure). If
the map is, however, tiled by the atom positions on the nano-device
instead (which Eq. (2) does not expose, as it computes one pair),
much of the movement can be reduced, as indicated in Fig. 5.

The resulting pair decomposition is rather complex, which would
traditionally take an entire code-base rewrite to support, but in our
case uses only two graph transformations on the SDFG. We make
the modification shown in the top-right of Fig. 5, which leads to an
asymptotic reduction in communication volume, speedup of two
orders of magnitude, and a reduction in MPI calls to a constant
number as a byproduct of the movement scheme (§ 6.1, 7).

5.3 Dataflow Optimizations
The data-centric view not only encompasses macro dataflow that
imposes communication, but also data movement within com-
pute devices. We use DaCe to transform all computations in the

communication-avoiding variant of OMEN, including the RGF algo-
rithm, SSE, and boundary conditions, and automatically generate
GPU code. In Fig. 6 we showcase a subset of these transformations,
focusing on a bottleneck subgraph of the simulator, which is found
within the SSE kernel: computing Σ≷ as in Eq. (2). We note that
computation of Π≷ is transformed in a similar manner.

An initial SDFG representation of the Σ≷ computation is shown
on the left side of the figure. In step ❶, we apply Map Fission and
isolate the individual operations to separate Maps. This allows stor-
ing intermediate results to transient arrays so that they can be
reused, effectively lowering the number of multiplications (akin to
regrouping algebraic computations in the formula). We then trans-
form each resulting map separately, but focus here on Σ≷, which
results from the accumulation of numerous products of N 2

orb -sized
matrices. Since Norb is small (typically ranging between 10 and 25),
these multiplications are inefficient and must be transformed.

In step ❷, we reorder the Σ≷ map dimensions and apply data-
layout transformations on the input, transient and output arrays.
The new data layout enables representing the ω map as the inner-
most dimension and split it out, exposing linear-algebra optimiza-
tions. In step ❸, the individual multiplications are aggregated to
more efficient GEMMoperations using the structure of themap. Fur-
thermore, due to the data re-layout, the inputs and outputs among
the sequential GEMM operations are accessed with constant stride.
This in turn allows us to use optimized strided-batched operations,
such as cublasZgemmStridedBatched from the cuBLAS library.
Finally, we specialize the strided-batched operation in DaCe, the
performance of which is discussed in § 7.1.5.

In step ❹, the separate maps are fused back together. The opti-
mized SDFG representation of the Σ≷ computation is depicted on
the right-hand side SDFG. All the transformations described above
result in an optimized SSE kernel that both reduces the flop count
(§ 6.1.1) and has increased computational efficiency (§ 7.1.7).

5.4 Mixed-Precision Computation
The iterative GF-SSE solver creates an opportunity to trade accu-
racy for performance. The computation of D≷ and G≷ in the RGF
phase consists of deep data dependency graph, whose precision
cannot be reduced without substantially impacting the result [14].
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However, the computation of Σ≷ in SSE, which is a sum of matrix
multiplications, can benefit from half-precision and Tensor Cores.

We adapt the computation in Fig. 6 to use NVIDIA GPU Tensor
Cores by transforming the tensors to split-complex format (con-
tiguous real followed by imaginary values), padding the internal
matrices to the required 16×16. For normalization, we observe that
the dynamic range of the inputs for the multiplications depends
on ∇H ,D≷,G≷, and compute factors based on their magnitudes.
Algebraically, denormalization entails scaling by inverse factors.
Out-of-range values are clamped to avoid under/overflow and min-
imize the difference over accumulation, done in double-precision.

6 HOW PERFORMANCEWAS MEASURED
To measure the performance of DaCe OMEN and compare it to
the state of the art (original code of OMEN), two Si FinFET-like
structures similar to the one shown in Fig. 1 have been defined:

• The first one labelled “Small” is characterized byW = 2.1nm
and L = 35nm. It exhibits the following parameters: Na =

4,864,Nb = 34,NE = 706, Nω = 70, and Nkz /Nqz varying
between 3 and 11. Unrealistically small NE and Nkz /Nqz
have been chosen to allow the original version of OMEN to
simulate it too, but the physical accuracy is not ensured.

• The second one labelled “Large” relies on realistic dimensions
(W = 4.8nm and L = 35nm) and physical parameters: Na =

10,240,Nb = 34,NE = 1,220, Nω = 70, and Nkz /Nqz varying
from 5 to 21 to cover both weak and strong scaling.

6.1 Performance Model
The majority of computations revolves around three kernels (§5.1):
(a) computation of the boundary conditions; (b) Recursive Green’s
Function (RGF); and (c) the SSE kernel. The first two kernels repre-
sent most of the computational load of the GF phase, while the SSE
phase comprises the SSE kernel. Table 3 shows the flop values, de-
fined empirically and analytically, for the “Small” Silicon structure
with varying Nkz values.

6.1.1 Computation Model. The kernels of the GF phase mainly
involve matrix multiplications between both dense and sparse ma-
trices. The computational complexity of the RGF algorithm for each

(kz , E) point is 8 · (26 · bnum − 25)
(
NaNorb
bnum

)3
+ O

((
NaNorb
bnum

)3)
,

where bnum is the number of diagonal Hamiltonian blocks. The
first term accounts for the dense operations, which comprise 90%
of the flop count. The latter term is an upper bound on the com-
putational load of the sparse operations. Since the RGF kernel is
executed on the GPU, we measure the exact GPU flop count with
the NVIDIA profiler nvprof.

In the SSE phase, the flop count of each dense small matrix multi-
plication (sized Norb ×Norb ) is 8N 3

orb . Thus, the overall flop count
for OMEN SSE is 64NaNbN3DNkzNqzNENωN

3
orb . The multiplica-

tion reduction (algebraic regrouping) powered by the data-centric
view (§ 5.3) decreases it by 2Nqz Nω

Nqz Nω+1 , essentially half of the flops
for practical sizes.

6.1.2 Communication Model. Computing Σ≷ (kz , E) in SSE req-
uires each electron pair to execute the following NqzNω times:

Table 3: Single Iteration Computational Load∗ (in Pflop)

Nkz

Kernel 3 5 7 9 11

Boundary Conditions 8.45 14.12 19.77 25.42 31.06
RGF 52.95 88.25 123.55 158.85 194.15
SSE (OMEN) 24.41 67.80 132.89 219.67 328.15
SSE (DaCe) 12.38 34.19 66.85 110.36 164.71

∗ : “Small” structure.

• Receive the phonon Green’s Functions D≷(qz ,ω);
• Receive the electron Green’s Functions G≷(kz − qz , E ± ω).
Symmetrically, send its own electron data G≷(kz , E) to the
(kz + qz , E ∓ ω) points;

• Accumulate a partial sum of the interactions of the atoms
with its neighbors, as described by Eq. (2).

We note that the computation of Π≷ follows a similar pattern.
Putting it all together, the communication scheme for SSE in OMEN
is split into NqzNω rounds. In each round:

• The phonon Green’s Functions D≷(ω,qz ) are broadcast to
all electron processes;

• Each electron process iterates over its assigned electron
Green’s Functions G≷(E,kz ) and receives the corresponding
G≷(E ± ℏω,kz − qz ). In a symmetrical manner, it sends its
assigned Green’s Functions to all (kz + qz , E ∓ ω) points;

• The partial phonon self-energies Π
≷
p (ω,qz ) produced by

each electron process are reduced to Π≷(ω,qz ) and sent to
the corresponding phonon process.

Based on the above, we make the following observations:
• All D≷ are broadcast to all electron processes;
• AllG≷ are replicated through point-to-point communication
2NqzNω times.

To put this into perspective, consider a “Large” structure simulation
with NE = 1,000. The communication aspect of the SSE phase
involves each electron process receiving and sending 276 GiB
for D≷ (Π≷), as well as 2.58 PiB for G≷, independent of the
number of processes.

In the transformed scheme (Fig. 5, right), each process is assigned
a subset of Na

Ta atoms and NE
TE electron energies, where P = TaTE is

the number of processes. The computations described in Eqs. (2)–
(3) require all neighbors per atom, which may or may not be in
the same subset. Therefore, the actual number of atoms that each
process receives is Na

Ta + c , where c is the number of neighboring
atoms that are not part of the subset. We over-approximate c by Nb .
In a similar manner, each process is assigned NE

TE + 2Nω energies.
We implement the distribution change with all-to-all collective

operations (MPI_Alltoallv in the MPI standard). We use four col-
lectives on G≷, D≷, Σ≷, and Π≷, where each process contributes:

• 64Nkz

(
NE
TE + 2Nω

) (
Na
Ta + Nb

)
N 2
orb bytes for G≷ and Σ≷;

• 64NqzNω

(
Na
Ta + Nb

)
(Nb + 1)N 2

3D bytes for D≷ and Π≷.

We quantify the communication volumes for a typical problem
size in Tables 4 and 5, the former with varying Nkz and the latter
with fixed parameters. Both tables highlight a clear advantage in
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Table 4: SSE Communication Volume∗ Weak Scaling (TiB)

Nkz (Processes)
Variant 3 (768) 5 (1280) 7 (1792) 9 (2304) 11 (2816)

OMEN 32.11 89.18 174.80 288.95 431.65
DaCe 0.54 [59×] 1.22 [73×] 2.17 [81×] 3.38 [85×] 4.86 [89×]

∗ : “Small” structure, reduction ratio in brackets.

Table 5: SSE Communication Volume∗ Strong Scaling (TiB)

Processes
Variant 224 448 896 1792 2688

OMEN 108.24 117.75 136.76 174.80 212.84
DaCe 0.95 [114×] 1.13 [104×] 1.48 [92×] 2.17 [80×] 2.87 [74×]

∗ : “Small” structure, Nkz = 7, reduction ratio in brackets.

favor of the communication-avoiding variant, communicating two
orders less than the state of the art. For the large-scale simulation
described above, the new communication approach (with Ta =

P,TE = 1) distributes the 276 GiB for D≷ and Π≷ over all processes,
and only adds a minor overhead of 28.26 MiB per process. It also
lowers the fixed cost of 2.58 PiB for G≷ and Σ≷ to only 1.8 TiB
distributed to all processes and 6.13 GiB per process. We note that
the total cost for G≷ becomes equal for the two communication
schemes when the number of processes is greater than 440,000.

6.2 Selected HPC Platforms
The two systems we run DaCe OMEN experiments on are CSCS Piz
Daint [4] (6th place in June 2019’s Top500 supercomputer list [25])
and OLCF Summit [7] (1st place). Piz Daint is composed of 5,704
Cray XC50 compute nodes, each equipped with a 12-core HT-
enabled (2-way SMT) Intel Xeon E5-2690 v3 CPU with 64 GiB
RAM (peaking at 499.2 double-precision Gflop/s), and one NVIDIA
Tesla P100 GPU (4.7 Tflop/s). The nodes communicate using Cray’s
Aries interconnect. Summit comprises 4,608 nodes, each containing
two IBM POWER9 CPUs (21 usable physical cores with 4-way SMT,
515.76 Gflop/s) with 512 GiB RAM and six NVIDIA Tesla V100 GPUs
(42 double-precision Tflop/s in total, 720 half-precision Tflop/s us-
ing Tensor Cores). The nodes are connected using Mellanox EDR
100G InfiniBand organized in a Fat Tree topology. For Piz Daint,
we run our experiments with two processes per node (sharing the
GPU), apart from a full-scale run on 5,400 nodes, where the simula-
tion parameters do not produce enough workload for more than
one process per node. In Summit we run with six processes per
node, each consuming 7 physical cores. We conduct experiments at
least 5 times, reporting the median and 95% Confidence Interval.

Despite the fact that both systems feature GPUs as their main
workhorse, the rest of the architecture is quite different. While Piz
Daint has a reasonable balance between CPU and GPU performance
(GPU/CPU ratio of 9.4×), Summit’s POWER9 CPUs are significantly
(81.43×) weaker than the six V100 GPUs present on each node.
Tuning our data-centric simulator, which utilizes both the CPU and
GPUs, we take this into account by assigning each architecture
different tile sizes and processes per node, so as to balance the load
without running out of memory.

7 PERFORMANCE RESULTS
We proceed to evaluate the performance of the data-centric OMEN
algorithm. Starting with per-component benchmarks, we demon-
strate the necessity of specialized implementations, and that critical
portions of the algorithm are sufficiently tuned to the underlying
systems. We then measure performance aspects of OMEN and the
DaCe variant on the “Small” problem, consisting of 4,864 atoms, on
up to 5,400 Piz Daint and 1,452 Summit GPUs. Lastly, we measure
the heat dissipation of the “Large”, 10,240 atom nanodevice on up
to 27,360 Summit GPUs.

7.1 Component Benchmarks
Below we present individual portions of the quantum transport
simulation pipeline, including data I/O, overlapping, computational
aspects of GF, SSE, and total single node performance.

7.1.1 Data Ingestion. The input of the simulator is material and
structural information of the nano-device in question (produced by
CP2K). The size of this data typically ranges between the order of
GiBs to 10s of GiBs, scattered across multiple files. Once the data is
loaded and pre-processed for each rank, the OMEN algorithm does
not require additional I/O, and can operate with the information
dispersed across the processes. Despite being a constant overhead,
without proper data staging, running at large scale quickly becomes
infeasible due to contention on the parallel filesystem. For example,
running on Piz Daint at near-full scale (5,300 nodes) takes over 30
minutes of loading, and with 2,589 nodes takes 1,112 seconds.

To reduce this time, we stage the nanostructure information and
broadcast relevant information in chunks to the participating ranks.
As expected, this reduces start-up time to under a minute in most
cases, and 31.1 seconds for 4,560 nodes. As the solver normally takes
20–100 iterations to converge, we also report time-per-iteration
factoring for I/O overhead w.r.t. 50 iterations.

7.1.2 Recomputation Avoidance. For each iteration of the Green’s
Function phase and for each energy-momentum point, three op-
erations are performed: (a) specialization of the input data, (b)
computation of the boundary conditions, and (c) execution of the
RGF kernel. From a data-centric perspective, the first two oper-
ations induce data dependencies on specific energy-momentum
points, but not on the iteration. Therefore, it is possible to perform
them once during an initialization phase and reuse the produced
output in all iterations. However, the memory footprint to avoid
recomputation is immense: specialization data for the “Large” nan-
odevice consumes 3GB per-point, while the boundary conditions
need another 1GB. We leverage the compute-memory tradeoff by
enabling three modes of executing the GF phase: (a) “No Cache”:
data is recomputed in every iteration; (b) “Cache Boundary Con-
ditions”, where data is only re-specialized per-iteration; and (c)
“Cache BC+Spec.”: both specialized data and boundary conditions
are cached in memory.

7.1.3 Automatic Pipelining. Since parallelism is expressed natively
in SDFGs, the DaCe framework schedules independent nodes con-
currently, using threads for CPU and CUDA streams for GPU. DaCe
automatically generates 32 and 60 streams for electron and phonon
GF computations, respectively. We vary the maximum number of
concurrent streams on a single electron point on Summit and report
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the results in Table 6. The results imply that more than 16 streams
are necessary to yield the 7.5% speedup in the table, automatically
achieved as a byproduct of data-centric parallel programming.

Table 6: CUDA Streams in Green’s Functions (Summit)

Streams 1 2 4 16 Auto (32)

Time [s] 10.07 9.94 9.86 9.61 9.32 (2.63 Tflop/s)

7.1.4 Green’s Functions and Sparsity. Since the RGF algorithm uses
a combination of sparse and dense matrices, several alternatives
exist to perform the required multiplications. In particular, a com-
mon operation in RGF is F[n] @ gR[n + 1] @ E[n + 1] —
multiplying two blocks (E, F ) of the block tri-diagonal Hamiltonian
matrix (H ) with a retarded Green’s Functions block (дR). The off-
diagonal blocks are typically sparse CSR matrices, but can also be
stored in CSC format if needed. To perform this operation, one can
either use CSR-to-dense conversion followed by dense multiplica-
tion (GEMM); or use sparse-dense multiplications (CSRMM). These
options can be interchanged via data-centric transformations.

Table 7: Matrix Multiplication Performance

Operation

GPU Method NN NT TN TT

P100 GEMM 100.337 ms 99.306 ms 101.959 ms 100.857 ms
CSRMM2 15.937 ms 11.437 ms 85.573 ms —
GEMMI 30.861 ms — — —

V100 GEMM 58.382 ms 58.144 ms 58.666 ms 58.315 ms
CSRMM2 8.202 ms 6.14 ms 52.722 ms —
GEMMI 15.198 ms — — —

In Table 7 we study the performance of the different methods in
cuBLAS and cuSPARSE, on the P100 and V100 GPUs. The CSRMM2
methodmultiplies a CSRmatrix (on the left side) with a densematrix
and supports NN, NT, and TN operations. The GEMMI method
multiplies a dense matrix with a CSC matrix (on the right side)
and only supports NN. In Table 8 we study the performance of
three different approaches to compute the above product. In the
first approach, we use dense multiplication twice. In the second
approach, we assume that both F and E are CSR matrices. We first
compute the product of E and дR with CSRMM2 in TN operation.
Subsequently, we multiply the intermediate result with F using
GEMMI. In the third approach, F is in CSR format while E is given
in CSC. We compute the product of F and дR with CSRMM2 in NT
operation. Using a second identical operation we multiply E with
the intermediate result. We observe that the best performance is
attained with the third approach, with 5.10–9.74× speedup over
other GPU implementations.

Table 8: 3-Matrix Multiplication Performance

Approach

GPU GEMM/GEMM CSRMM2/GEMMI CSRMM2/CSRMM2

P100 200.879 ms 116.380 ms 22.798 ms
V100 116.881 ms 67.924 ms 11.994 ms
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Figure 7: Comparison of double- and half-precision SSE.

7.1.5 Custom Strided Multiplication. As part of SSE dataflow trans-
formations (§ 5.3), we reformulate a multitude of small-scale matrix
multiplications into one “strided and batched” GEMM operation
(Fig. 6, step❸). We thus initially opt to use the highly-tuned NVIDIA
cuBLAS library for the computation, which yields 85.7% of peak
double-precision flop/s on average. However, upon deeper inspec-
tion using the performance model (§ 6.1.1), we observe a discrep-
ancy, where the useful operations/second with respect to the actual
sizes is only around 6% of the GPU peak performance. As our in-
dividual matrices are small (typically 12×12), this effect may stem
from excessive padding in cuBLAS, which is tuned specifically for
common problem sizes.

Table 9: Strided Matrix Multiplication Performance

cuBLAS DaCe (SBSMM)

GPU Gflop Time % Peak (Useful) Gflop Time % Peak

P100 27.42 6.73 ms 86.6% (6.1%) 1.92 4.03 ms 10.1%
V100 27.42 4.62 ms 84.8% (5.9%) 1.92 0.70 ms 39.1%
V100-TC — — — 3.42 0.13 ms —

We use DaCe to create two specialized strided-batched small-
scale matrix multiplication tasklets (SBSMM in Fig. 6), and report
their performance in Table 9. The double-precision tasklet maxi-
mizes parallelism based on the problem size and does not pad data;
whereas the half-precision tasklet utilizes Tensor Cores (§5.4) for
complex matrix multiplications. As shown in the table, SBSMM is
5.76× (64-bit) to 31× (16-bit) faster than cuBLAS, which does not
support half-complex multiplication, demonstrating that performance
engineers can use the data-centric view to partition specific problems
in ways not considered by vendor HPC libraries.

7.1.6 Mixed-Precision Convergence. Figures 7a and 7b depict the
output value distribution and convergence of the electronic current
for SSE and the reduced-precision scheme (SSE-16, § 5.4) for the
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Figure 8: DaCe OMEN simulation scalability (Na = 4,864, black lines: ideal scaling).

“Large” structure. When normalization is applied, SSE-16 produces
similar outputs per step and converges at the same rate as SSE, to a
value that relatively differs by 1.2 · 10−6. In comparison, without
scaling D≷,G≷, the relative error increases to 0.003. The core mul-
tiplication kernels, SBSMM, yield 14.78 Tflop/s per-GPU, 404.41
Pflop/s in total over 4,560 Summit nodes.

7.1.7 Single-Node Performance. We evaluate the performance of
OMEN, the DaCe variant, and the Python implementation (using
the numpy module implemented over MKL), on the “Small” Silicon
nanostructure with Nkz = 3. Table 10 shows the runtime of the
GF and SSE SDFG states, for 1

384 of the total computational load,
executed by a single node on Piz Daint. Although Python uses opti-
mized routines, it exhibits very slow performance on its own. This
is a direct result of utilizing an interpreter for mathematical expres-
sions, where arrays are allocated at runtime and each operation
incurs high overheads. This can especially be seen in SSE, which
consists of many small multiplication operations. The table also
indicates that the data-centric transformations made on the Python
code using DaCe outperforms the manually-tuned C++ OMEN on
both phases, where the performance-oriented reconstruction of
SSE generates a speedup of 9.97×.

Table 10: Piz Daint Single-Node Performance

Phase

Variant GF SSE

Tflop Time [s] % Peak Tflop Time [s] % Peak

OMEN 174.0 144.14 23.2% 63.6 965.45 1.3%
Python 174.0 1,342.77 2.5% 63.6 30,560.13 0.2%
DaCe 174.0 111.25 30.1% 31.8 29.93 20.4%

7.1.8 Communication. We study DaCe OMEN’s communication ef-
ficiency on the Summit supercomputer. We utilize MPI_Alltoallv
to exchange D≷, Π≷,G≷, and Σ≷. In this collective call, each rank
sends a different amount of data to all other ranks, performed in sev-
eral rounds [21]. For OMEN, the communication pattern is sparse
for some of the calls. We derive lower bounds for the completion
time of each call by counting the amount of data each node must
send (aggregating over all ranks on the same node), and dividing
that by the injection bandwidth of a Summit node of 23 GB/s [7].

For the large-scale run, our model predicts 1.85s of runtime to
communicate each of D≷/Π≷ and 0.21s to communicate each of
G≷/Σ≷ at 100% of injection bandwidth utilization. Our measure-
ments (§ 7.3) show that we achieve 84.57% and 42.32% of that (2.18s
and 0.55s actual runtime for D≷/Π≷ and G≷/Σ≷, respectively).

7.2 Scalability
The communication-avoiding variant of OMEN (DaCeOMEN ) scales
well to the full size of both supercomputers. In Fig. 8, we measure
the runtime and scalability of a single GF-SSE iteration of OMEN
and the DaCe variant on Piz Daint and Summit. For strong scaling,
we use the “Small” structure and fix Nkz = 7 (so that OMEN can
treat it), running with 112–5,400 nodes on Piz Daint and 19–228
nodes (114–1,368 GPUs) on Summit. For weak scaling, we annotate
ideal scaling (in black) with proportional increases in the number of
kz points and nodes, since the GF and SSE phases scale differently
relative to the simulation parameters, by Nkz and NkzNqz = N 2

kz
,

respectively. Wemeasure the same structure with varying kz points:
Nkz ∈ {3, 5, 7, 9, 11}, using 384–1,408 nodes on Piz Daint and 66–
242 nodes (396–1,452 GPUs) on Summit.

Compared with the original OMEN, the DaCe variant is efficient,
both from the computation and communication aspects. On Piz
Daint, the total runtime of the reduced-communication variant out-
performsOMEN, the current state of the art, up to a factor of
16.3×, while the communication time improves by up to 417.2×.
On Summit, the total runtime improves by up to factor of 24.5×,
while communication is sped up by up to 79.7×. Moreover, the
higher the simulation accuracy (Nkz ), the greater the speedup is.

The speedup of the computational runtime on Summit is higher
than on Piz Daint. This is the result of OMEN depending onmultiple
external libraries, some of which are not necessarily optimized for
every architecture (e.g., IBM POWER9). On the other hand, SDFGs
are compiled on the target architecture and depend only on a few
optimized libraries provided by the architecture vendor (e.g., MKL,
cuBLAS, ESSL), whose implementations can always be replaced by
SDFGs for further tuning and transformations.

As for scaling efficiency, on Summit DaCe OMEN achieves a
speedup of 9.68× on 12 times the nodes in the strong scaling ex-
periment (11.23× for computation alone). Piz Daint yields similar
results with 10.69× speedup. The algorithm weakly scales with Nkz
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on both platforms, again an order of magnitude faster than the state
of the art on structures of the same size. We thus conclude that the
data-centric variant of OMEN is strictly desirable over the original.

7.3 Extreme-Scale Runs
We run DaCe OMEN on a setup not possible on the original OMEN,
due to infeasible memory requirements. We simulate the “Large”
10,240 atom nanostructure — a size never-before-simulated with
GF+SSE at the ab initio level — using the DaCe variant of OMEN.
For this purpose, we use up to 98.96% of the Summit supercomputer,
27,360 GPUs, and run our proposed Python code with 21 kz points,
which are necessary to produce accurate results (see Table 2).

Figure 9 plots the results of the strong-scaling experiment, us-
ing 3,420 GPUs for the baseline. The simulation costs 8.17–9.41
Exaflop per iteration, depending on the caching strategy (specializa-
tion and/or boundary conditions, § 7.1.2). Sustained performance
of 85.45 Pflop/s (42.55% of supercomputer peak) is achieved
in double precision, and 90.89.68 Pflop/s in mixed precision, in-
cluding communication, I/O, and caching as described above. A
full breakdown is listed in Table 11. The table compares perfor-
mance with machine peak and effective maximum performance
(HPL, 148.6 Pflop/s for Summit [25]). Additionally, we compare the
per-atom performance of the DaCe variant with the original OMEN
on 6,840 Summit GPUs. Both implementations execute a simula-
tion with 21 kz points and 1,220 electron energies, but different
number of atoms. As shown in Table 12, DaCe OMEN is up to two
orders of magnitude faster per-atom. These results prove that
the electro-thermal properties of nano-devices of this magnitude
can be computed in under 2 minutes per iteration, as desired for
practical applications.

Table 11: Full-Scale 10,240 Atom Run Breakdown

Phase Time Eflop Pflop/s % Max % Peak

Data Ingestion 31.10 — — — —
Boundary Conditions 30.51 1.23 40.40 27.19% 20.12%

GF 41.36 6.00 145.01 97.59% 72.22%
SSE (double-precision) 41.91 2.18 51.94 34.95% 25.87%
SSE (mixed-precision) 36.16 2.18 60.21 — —
Communication 11.50 — — — 76.72%

Total 94.77 8.17 86.26 58.05% 42.96%
Total (incl. I/O and Init.) 96.00 8.20 85.45 57.50% 42.55%

Total (mixed-precision) 89.02 8.17 91.68 — —
Total (incl. I/O and Init.) 90.25 8.20 90.89 — —

To gain insight on the factors that limit the performance of DaCe
OMEN, we analyze the bottlenecks of each phase in Table 11. We

Table 12: Per-Atom Performance
Variant Na Time [s] Time/Atom [s] Speedup

OMEN 1,064 4,695.70 4.413 1.0x
DaCe 10,240 333.36 0.033 140.9x
P = 6,840, Nb = 34, Norb = 12, NE = 1,220, Nω = 70.

0.1 

1

10 

100 

1000 

0.1 1 10 100 

Pe
rf

or
m

an
ce

 (
T
fl
op

/s
)

Operational Intensity (Flop/Byte) 

V100 L2
 cache b/w lim

it

S
S
E
-6

4

V100 DP compute limit

V100 Tensor Core compute limit 

R
G

F 

S
S
E
-1

6
 

Figure 10: Roofline model of the computational kernels.

use the Roofline model [29] to depict the limits of the main phases
in Fig. 10. The GF phase, as seen in Fig. 10, is compute-bound,
achieving 97.59% of HPL performance. In contrast, the SSE phase
combines a multitude of small matrix multiplications, which were
shown to be memory-bound [16]. This agrees with our empirical
results, in which the memory per batched multiplication is small
enough to fit in the L2 cache, and operational intensity is too low
to be compute-bound. Mixed-precision SSE (Fig. 10, SSE-16) im-
proves I/O by reducing element size, but is still limited by memory
bandwidth from a data-centric perspective. Communication (§ 7.1.8
for a full model) is a sparse alltoall collective, which achieves in
total 76.72% bandwidth utilization and cannot be overlapped with
computation algorithmically.

8 IMPLICATIONS
8.1 Quantum Transport Simulations
With DaCe OMEN, the electro-thermal properties of FinFET-like
structures can now be simulated within ultra-short times. An ex-
ample is shown in Fig. 11. The left sub-plot represents the electron
(dashed blue line) and phonon (dashed-dotted green line) energy
currents that flow through the considered device. As their sum is
constant over the entire FinFET axis x (solid red line), it can be
inferred that energy is conserved and that the GF+SSE model was
correctly implemented. The following information can be extracted
from the data: (i) dissipated power (left plot), (ii) spectral distribu-
tion of the electrical current (middle plot, red indicates high current
concentrations, green none), (iii) average crystal temperature along
the x-axis (middle plot), and (iv) heat propagation map (right plot,
red: heat flow towards left, blue: heat flow towards right). The atom-
ically resolved temperature of this system was already presented in
Fig. 1(d). It turns out that most of the heat is generated close to the
end of the transistor channel (x=27nm). From there, it propagates
towards the source (x=0) and drain (x=L) extensions, where it is
absorbed by the metal contacts. It can also be seen that the location
with the highest heat generation rate coincides with the maximum
of the crystal temperature (Tmax ). Both are situated in a region with
a high electric field, where electrons are prone to emit phonons.

Heat dissipation does not only affect the behavior of nano-scale
transistors, but also of a wide range of other nano-devices. For
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example, Lithium-ion batteries (LIBs), under unfavorable operating
conditions, can overheat and endanger the security of the objects
and persons surrounding them. Understanding how heat is cre-
ated in these energy storage units (chemical reaction, Joule heating,
other) and providing design guidelines to reduce the temperature of
their active region are two objectives of utmost importance. Other
nano-structures such as non-volatile phase change random access
memories (PCRAM) leverage Joule heating to undergo a transition
from an amorphous to a crystalline phase. By better controlling
this electro-thermal phenomenon, it will be possible to obtain a
more gradual change from their high- to their low-resistance state
such that PCRAMs can act as solid-state synapses in “non von
Neumann” neuromorphic computing circuits. Current research in
nano-transistors, LIBs, and PCRAM cells, to cite a few applications,
is expected to benefit from the improvements that have been made
to the electro-thermal model of OMEN. Structure dimensions that
were believed to belong to the world of the imaginary are now
accessible within short turn-around times. Consequently, the pro-
posed code will allow to establish new bridges with experimental
groups working on nano-devices subject to strong heating effects.

8.2 Data-Centric Parallel Programming
The paper demonstrates howmodifications to data movement alone
can transform a complex, nonlinear solver to become communica-
tion efficient. Through modeling made possible by a data-centric
intermediate representation, and graph transformations of the un-
derlying macro- and micro- dataflow, this work is the first to intro-
duce communication-avoiding principles to a full application.

Because of the underlying retargetable SDFG representation, the
solver runs on two different top-6 supercomputers efficiently, rely-
ing only on MPI and one external HPC library (BLAS) per-platform.
The SDFG was generated from a Python source code five times
shorter than OMEN, and itself contains 2,015 nodes after transfor-
mations, created without modifying the original operations. The
resulting performance is two orders of magnitude faster per-atom
than the fine-tuned state of the art, which was recognized twice as
a Gordon Bell finalist. This implies that overcoming scaling bottle-
necks today requires reformulation and nontrivial decompositions,
whose examination is facilitated by the data-centric paradigm.
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