
MPI Datatype Processing using Runtime Compilation

Timo Schneider
ETH Zurich

Dept. of Computer Science
Universitätstr. 6

8092 Zurich, Switzerland
timos@inf.ethz.ch

Fredrik Kjolstad
MIT

CSAIL
32 Vassar Street Cambridge,

MA 02139
fred@csail.mit.edu

Torsten Hoefler
ETH Zurich

Dept. of Computer Science
Universitätstr. 6

8092 Zurich, Switzerland
htor@inf.ethz.ch

ABSTRACT
Data packing before and after communication can make up
as much as 90% of the communication time on modern com-
puters. Despite MPI’s well-defined datatype interface for
non-contiguous data access, many codes use manual pack
loops for performance reasons. Programmers write access-
pattern specific pack loops (e.g., do manual unrolling) for
which compilers emit optimized code. In contrast, MPI im-
plementations in use today interpret datatypes at pack time,
resulting in high overheads. In this work we explore the ef-
fectiveness of using runtime compilation techniques to gen-
erate efficient and optimized pack code for MPI datatypes at
commit time. Thus, none of the overhead of datatype inter-
pretation is incurred at pack time and pack setup is as fast
as calling a function pointer. We have implemented a library
called libpack that can be used to compile and (un)pack MPI
datatypes. The library optimizes the datatype representa-
tion and uses the LLVM framework to produce vectorized
machine code for each datatype at commit time. We show
several examples of how MPI datatype pack functions ben-
efit from runtime compilation and analyze the performance
of compiled pack functions for the data access patterns in
many applications. We show that the pack/unpack func-
tions generated by our packing library are seven times faster
than those of prevalent MPI implementations for 73% of the
datatypes used in a scientific application and in many cases
outperform manual pack loops.

1. INTRODUCTION
Most scientific applications perform some form of domain

decomposition to parallelize the effort of solving a specific
problem. Each process in an SPMD program is responsible
for a patch of the global domain and performs calculations
on this local sub-problem independently of other processes.
If the underlying problem requires iterations but is not mas-
sively parallel, partial solutions of the local domain have to
be exchanged with neighboring processes between iterations.
A simple example for such a problem are time-stepping sten-
cil codes [13], as shown in Figure 1. In this example the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroMPI EuroMPI ’13, September 15 - 18 2013, Madrid, Spain
Copyright 2013 ACM 978-1-4503-1903-4/13/09 ...$15.00.

Figure 1: Domain-decomposed 2D stencil. Data
exchanged in east-west direction must be packed
before it can be sent, e.g. with the given MPI
datatype.

global domain is represented by an N × N matrix, which
gets partitioned into p blocks (one per process) of roughly
equal size. After each time step the boundary regions of
these partitions have to be exchanged with neighboring pro-
cesses, before the next time-step can be started.

If we assume matrices are stored in row-major order, data
exchanged in the north-south direction is consecutive in lo-
cal memory, while data in the east-west direction is not. It
either has to be sent and received in multiple small chunks,
which can be inefficient due to the constant overhead as-
sociated with each send operation, or the data has to be
packed into a consecutive buffer and sent in one piece. Of
course this process has to be reversed (the data has to be
unpacked) after such data is received. However, in the fol-
lowing we will not separate between packing and unpacking
as they are symmetric — when we say packing we mean
both packing and unpacking. The packing approach can
be found in many codes which are similar to the example
above, for example WRF [15], MILC [2], NAS LU, MG, SP
and BT [5], and SPECFEM [4]. Most of these applications
pack data by looping over it and copying it into a temporary
buffer. We call this manual packing or pack loops.

Manual pack loops have drawbacks. First, and most im-
portantly, they always perform an explicit copy of all the
data. However, this is just one of multiple possible strate-
gies. Other possible strategies include pipelining the packing
with partial sends, thereby overlapping packing and send-
ing, or better yet, to use emerging network hardware with
support for non-contiguous transfers [16]. Replacing manual
packing code with data layout descriptions (datatypes) gives
MPI implementations flexibility to choose the best strategy
for the available hardware. Furthermore, it can detect cases
where the data to be sent is contiguous and avoid the copy

0

250

500

750

1000

0

100

200

300

500

1000

1500

M
IL

C
N

A
S

 L
U

W
R

F

0 50 100 150
Size of packed Data [KB]

P
a

c
k
 +

 U
n
p

a
c
k
 +

 C
o

m
m

u
n

ic
a
ti
o
n

 T
im

e
 [

u
s
]

Pack Method

Cray MPI

Manual Packing in C

Our Implementation

Figure 2: Overhead of exchanging non-continuous
data in three codes. The data can be packed ex-
plicitly with a manual pack loop or our runtime-
compiled pack functions, or it can be packed im-
plicitly using MPI derived datatypes in any MPI
communication.

altogether! Finally, the optimal packing strategy depends
on the target machine and compiler, which makes it hard
for application programmers to write performance-portable
pack loops.

For these reasons the MPI standard defines an interface
to specify non-contiguous data layouts, called MPI Derived
Datatypes (DDTs), which can be used with any communi-
cation or IO function [12]. For example, the DDT for the
east-west exchange in Figure 1 can be constructed with an
MPI vector datatype. Before a DDT can be used to send or
receive data, it has to be committed. Committing a datatype
allows MPI to perform optimizations on that datatype that
allow efficient packing and unpacking of data.

We showed in a previous paper that packing and unpack-
ing data can contribute up to 90% of the total communi-
cation overhead for non-contiguous sends [14]. We also ob-
served that in many cases the manual pack loops are faster
than using MPI derived datatypes. One of the reasons for
this is that manual pack loops are written as specific as possi-
ble and can be translated by the compiler into very efficient,
machine code, while MPI DDTs are interpreted at runtime
in all current implementations. In this work we attempt
to bridge this gap by using runtime compilation techniques
to generate efficient native packing code at the moment a
datatype is committed. We utilize the fact that, at the time
we generate the pack functions, we know the values of all ar-
guments with which the datatype was constructed (including
its sub-types). This lets us generate highly specialized code,
unroll small loops completely, promote datatypes to more
specialized types and merge types. Figure 2 demonstrates
that this approach is very effective. Runtime compiled pack
functions outperform MPI packing in all tested cases (which
are taken from real-world applications such as WRF [15],
MILC [2], or the NAS benchmarks [5].

In this work we demonstrate the effectiveness of using run-
time compilation to generate fast pack functions for MPI
DDTs. However, the same approach can also be used to
enable fast packing for bulk transfers in other programming
models, such as global address space languages. We show

how runtime compilation can be done in a straightforward
platform-independent manner. Since we use LLVM for code
generation we can generate pack/unpack functions for many
architectures, including x86, PowerPC, ARM, and IA64.
The goal of this work is to answer whether datatype en-
gines benefit from runtime compilation techniques. Finally,
we have made our packing library for MPI DDTs publicly
available for use by the community.1

2. RUNTIME DATATYPE COMPILATION
In the introduction we mentioned the MPI vector

datatype. This datatype is part of a family of three derived
datatypes that describe regular packing patterns. These
are contiguous, vector, hvector datatypes. Contiguous types
take a count specifying the number of sub-types. Note that
subtypes can either be primitives, such as doubles and inte-
gers, or they can themselves be arbitrary derived datatypes.
Vectors take a three-tuple (count, blocklength, stride) and
pack count blocks of blocklength contiguous subtypes where
each block is the extent of stride subtypes apart. Hvectors
are like vectors, with the exception that strides are given in
bytes instead of subtype extents.

The other family of derived datatypes are the indexed
datatypes that describe irregular pack patters. These are in-
dexed block, indexed, hindexed and struct. Common to all
of these is that the location of the subtype blocks are given as
an displacement/index list. Apart from this, indexed block
and indexed datatypes specify displacements in element mul-
tiples, while hindexed and struct datatypes specify them in
bytes. Furthermore, indexed block datatypes require each
block to have the same length, and struct types allow a dif-
ferent subtypes for each block.

We use LLVM for code generation [11]. LLVM is a mod-
ular compilation framework centered around a well docu-
mented type-safe intermediate representation (IR). At com-
mit time we use the LLVM code generation APIs to con-
struct an in-memory representation of our packing code in
LLVM IR. We then invoke the LLVM JIT code generation
backend to produce machine code for the target backend,
which returns to us a function pointer to the pack function.
Note that, although LLVM supports a rich set of optimiza-
tions on its IR, we do not need them or use them. The
reason for this is that datatypes are very simple compared
to a general purpose languages, and we can therefore output
compact and optimized LLVM IR in the first place. Running
LLVM optimization passes on this IR increases compilation
time and does not improve the code.

2.1 Packing Contiguous Data
Even when packing non-contiguous datatypes, the leaves

of the datatype hierarchies are blocks of contiguous data of
varying lengths. This is the code that performs the actual
copy work and it is critical that it performs well. There is
a surprising variety of ways to copy data on modern proces-
sors, some of which generalize well across platforms. On X86
there is a choice between the movs instruction that moves
data between two memory locations, and instructions that
load data into registers followed by instructions that store
the data to a different memory location. Load and store in-
structions come in many forms, from normal one-word loads

1
http://spcl.inf.ethz.ch/Research/Parallel_Programming/

MPI_Datatypes/libpack/

http://spcl.inf.ethz.ch/Research/Parallel_Programming/MPI_Datatypes/libpack/
http://spcl.inf.ethz.ch/Research/Parallel_Programming/MPI_Datatypes/libpack/

0.3

0.5

1.0

2.0

5.0

10.0

15.0

100 1000 10000
Data Size [B]

P
a
c
k
 B

a
n
d
w

id
th

 [
G

B
/s

]

Pack Method

SSE2 (NT store)

SSE2

AVX

Cray MPI

Figure 3: A comparison of different methods to copy
contiguous blocks of data on the JYC machine.

to vector instructions of varying widths. Furthermore, the
vector instructions can be aligned or unaligned and tem-
poral or non-temporal. The latter refers to whether the
load/stores will bypass the cache or not.

As demonstrated in Figure 3 we compared several dif-
ferent instruction types and found that there is no single
optimal copy method per machine, and certainly not across
different architectures. Furthermore, we found that for typ-
ical small data copies, the overhead of using aligned instruc-
tions, which in general require a preamble and postamble to
copy the unaligned part of the output buffer with unaligned
instructions, is higher than the gain.

Our implementation supports both aligned and unaligned
stores and the method can be selected at compile time, but
defaults to unaligned stores. Furthermore, we use the LLVM
vector type to generate vector instructions automatically.
Since, 128-byte stores (SSE2) were superior on our test plat-
forms, we currently use this vector width. In addition, the
loops around the vectors are unrolled 16 times and if the size
of the contiguous data is less than 256, the loop is completely
unrolled and removed. The vector width, unroll factor and
unroll threshold are optimized for current X86 processors,
but are compile-time configurable. Although LLVM’s vec-
tor types allow our code to generalize well, future work could
include determining these values through experimentation.

2.2 Compiling Vector Datatypes
Multi-dimensional arrays are very common in scientific

applications and border exchanges typically require slices of
these to be communicated, such as 2D or 3D faces. Such
slices can most conveniently be described with vector hi-
erarchies or the subarray datatype and the performance of
such datatypes is therefore critical for a solid datatype im-
plementation.

Our runtime compiler generates specialized code for vector
datatypes that takes advantage of the fact that the vector
count as well as the subtype’s extent are known at compile
time to reduce the number of induction variables and to
precompute the loop bound.

For example, the MILC code creates the following
datatype when run with 32 processes: a hvector datatype
(count=2, blocklen=1, stride=6144) of vector datatypes
(count=8 blocklength=8 stride=32) of contiguous datatypes
(count=6), of MPI FLOATs.

In this example the very low vector loop overhead of the
code produced by our runtime compiler, combined with the
unrolled code generated for the blocks of the innermost vec-

0.5

1.0

5.0

10.0

10 100 1000
Data Size [KB]

M
e

m
o

ry
 B

a
n
d

w
id

th
 [

G
B

/s
]

Pack Method

Our Implementation

Cray MPI

Figure 4: A comparison of Cray MPI with runtime
compiled pack functions for packing a nested vector
with a small inner vector.

tor, results in very efficient code. In Figure 4 we gradually
increase the count of the outermost vector. We see that, even
when the datatype becomes larger than the L1 cache size,
our runtime compiled pack function always outperforms the
pack function of Crays vendor MPI (from Cray Compiling
Environment 8.1.6) by a factor of 10.

We believe most of this performance advantage comes
from the fact that our runtime compiler determines an effi-
cient inner vector loop at compile time and incurs no over-
head at pack time to decide what to do. An interpreted
approach would have to incur overhead at pack time to se-
lect a good inner loop, and nested vectors would necessitate
this overhead multiple times. We see the same effect with
MPICH2 where we can inspect the source code, and it high-
lights the advantage an runtime compilation approach has
over an interpreter.

2.3 Compiling Irregular Datatypes
As described above, irregular datatypes such as hindexed,

indexed block and structs contain a list of offsets as well as
a description of the lengths of the blocks pack at each offset.

Such datatypes are often used to capture one of two pat-
terns. The first case is when the communicated data lacks
structure, such as for graphs, particle codes, or irregular
meshes. The SPECFEM application is an example of the
latter. The second case is when the user needs to pack data
from multiple data structure, such as two arrays. In this
case, an hindexed or struct datatype can be used to link
the datatypes describing each array together. This is done
in the WRF application, where data that logically belongs
together is kept in three separate arrays and is packed using
a struct of vectors.

Such data-access patterns are hard to pack efficiently with
traditional, interpreter-like datatype engines, since they
must load the complete index list into registers during pack-
ing. Using runtime compilation we can embed the index list
into the generated code if the index list is small, as is often
the case. Otherwise, a runtime compiler can unroll the loop
over the indices to reduce looping overhead.

Figure 5 compares our performance to that of Cray MPI
for index lists. Again, we observe that runtime compilation
results in significantly lower overheads and improved perfor-
mance compared to an interpreted approach.

2.4 Compiling Hierarchical Datatypes
As we alluded to earlier, MPI datatypes can be composed

in arbitrary hierarchies to describe any layout. For example,
while vector datatypes can be used to pack slices of 2D ar-

6

7

8

9

10

11

10 50 100 500
Data Size [KB]

P
a
c
k
 B

a
n
d

w
id

th
 [
G

B
/s

]

Pack Method

Our Implementation

Cray MPI

Figure 5: A performance comparison between Cray
MPI and runtime compiled pack functions packing
hindex datatypes with random displacements.

Figure 6: An example for a nested vector DDT, its
memory-access pattern and internal representation
in our object-oriented packing library.

rays, vector-of-vectors allow sub-volumes of 3D arrays to be
packed. Figure 6 demonstrates how derived datatypes can
be combined to create more complex data-access patterns.

Each datatype is represented as a C++ object, and each
object has one or more pointers to its subtype(s). To gen-
erate the pack functions, each datatype object has a code-
gen method that emits LLVM IR to pack itself, which in-
cludes calling it’s subtype’s codegen method. A more de-
tailed description of the implementation can be found in the
README file which comes with the code of libpack.

However, before code generation a few optimizations are
performed bottom up on the datatype tree representation.
First, if a contiguous, vector or hvector datatype has a
contiguous subtype, then the subtype is merged into the
count/blocklength of its parent and removed. This optimiza-
tion only applies if the size of the contiguous type equals its
extent. Second, vector and hvector datatypes, whose stride
(in elements of the subtype) equals their blocklength are pro-
moted to contiguous types. These optimizations allow us to
produce better code with fewer loops, without complicating
the code generators.

When packing large datatypes for a blocking send, it is
possible to overlap the packing process with communication
by segmenting the datatype: it is unnecessary to wait un-
til the whole datatype has been packed, as soon as a chunk
of the packed buffer is ready, this chunk can be sent (in a
non-blocking manner) and a second buffer can be used to
pack the next segment. The same technique can be used to
unpack data partially before the full buffer is received. This
method keeps the size of the required temporary pack buffer
constant, regardless of the size of the datatype. This can be
done with our library by splitting a high level datatype into
multiple datatypes thereby obtaining different pack func-
tions for the different segments.

2.5 Performance Hints to MPI
We identified several sources of uncertainty which hinder

further optimization of derived datatypes in MPI.
First, the user has no way to indicate at commit time if

he wishes to reuse the datatype many times, and can there-
fore tolerate longer optimization times, or if the datatype
will not be reused and therefore it is important to minimize
the create and commit overhead. Second, when the pack
function is used, the output and input buffers are supplied.
In many applications the buffers are always the same. If
that is the case then the pack function can use absolute in-
stead of (often slower) relative addressing. Furthermore, if
it is known which parts of the buffer will be aligned, then
aligned memory operations can be generated without the
overhead of the mentioned pre- and postamble. Third, in
many cases the user always communicates the same number
of datatypes. If this is the case, additional opportunities for
unrolling the outer loop exists. For example, if the number
of datatypes sent is always 1, then the outer loop can be
completely removed.

The user could remove these uncertainty factors by us-
ing MPI info arguments, if the MPI Type commit function
would accept them in future versions of MPI.

3. EXPERIMENTS
All experiments in this paper have been carried out on

JYC, the Blue Waters test system at the National Center
for Supercomputing Applications. JYC consists of a single
cabinet Cray XE6 (74 nodes with 2368 Interlagos 2.3-2.6
GHz cores). We use the GNU compiler version 4.7.2 and
compiled all benchmarks with -O3 optimization. The Cray
Compilation Environment version on the system is 8.1.6,
however, our packing library also beats recent versions of
MPICH, MVAICH and Open MPI on Intel i5 and i7 CPUs,
for which we do not provide results due to space limitations.

3.1 Micro-Applications
In this section, we compare the performance of runtime

compiled pack functions to that of Cray’s optimized MPI,
using DDTBench [14], a micro-application based benchmark
for MPI derived datatypes. It contains manual pack routines
extracted from real application codes, such as LAMMPS,
SPECFEM3D, MILC, and the NAS benchmarks. These
pack loops have been converted to MPI datatypes (partly us-
ing a tool we developed in previous work [10]) to allow us to
benchmark MPI datatype engines with realistic datatypes.
We wrote an MPI wrapper for our library, which intercepts
the calls to MPI datatype functions as well as those to send,
receive and wait functions. If the datatypes used in those
functions are not primitive types, it packs/unpacks them
using our packing library and uses MPI’s PMPI interface
to send and received packed data. This wrapper allows us
to use DDTBench without modifications to benchmark our
runtime compiled pack functions.

DDTBench performs a ping-pong between two processes,
and uses either a manual pack loop or the equivalent
datatype to pack data each time it leaves a process and
unpack it on arrival. By comparing the timings obtained to
those of a ping-pong of equal size with consecutive data, we
can measure how much packing the non-consecutive data
costs, as a fraction of the total round-trip time. Figure 7
shows the result of such a measurement. Runtime compiled
datatypes always outperform Cray MPI, and are roughly on

LA
M

M
PS_a

to
m

ic

LA
M

M
PS_f

ul
l

M
IL

C
_s

u3
_z

d

N
AS_L

U
_y

SPEC
FEM

3D
_o

c

W
R
F_x

_v
ec

W
R
F_y

_v
ec

40

60

80

100

6
K

8
K

1
0

K

1
0

K

1
5

K

2
0

K

2
5

K

5
0

K

7
5

K

1
0

0
K

1
0

K

2
0

K

3
0

K

4
0

K

5
0

0

1
0

0
0

6
0

K

9
0

K

1
2

0
K

1
5

0
K

5
0

K
6

0
K

7
0

K
8

0
K

9
0

K

Datasize [Byte]

P
a

c
k
in

g
 O

ve
rh

e
a

d
 [

%
]

Pack Method

Cray MPI

Manual Packing in C

Our Implementation

Figure 7: Packing overhead for data access patterns
from different applications. Runtime compiled pack
functions always outperform Cray MPI and are com-
parable with manual packing.

0

20

40

60

0 10 20 30 40
Packing speedup achieved with online compiled pack functions

N
u

m
b

e
r

o
f

o
c
c
u

ra
n
c
e
s

Figure 8: Speedup of DDTs in MILC. More than
73% of them can be packed in less than one-
seventh of the time when using runtime-compiled
pack functions instead of Cray MPI. None of the
used datatypes experienced slowdown.

the same level with manual packing, despite the additional
overhead of the MPI wrapper. In case of MILC and WRF,
our packing library outperforms manual packing by a large
margin, since the original packing code in MILC uses index
lists, while the data to be packed is in fact is in a regular
form and can be packed with nested vectors.

3.2 Application Benchmarks
In this subsection, instead of analyzing the performance

of single datatypes, we analyze all datatypes that occur in
a complex application. To do this we intercept all calls to
MPI Type commit. We create each committed datatype in
our packing library and as an MPI datatype and record the
overhead for this step. Then we use each datatype for pack-
ing and unpacking and again record the required time. To
minimize the influence of OS jitter we report the median of
several measurements.

Hoefler et al. demonstrated that the performance of MILC
can be improved by up to 25% using (interpreted) MPI
datatypes instead of the original pack code [8]. In this sec-
tion we analyze which fraction of the 96 datatypes in MILC
can benefit from runtime compilation techniques, and to
what degree. Figure 8 shows a histogram of the different
speedups achieved for each datatype in MILC when run-
ning the sample input file on eight processes. Most of the
recorded datatypes can be packed with runtime-compiled

0

20

40

60

0 10 20 30 40
Packing speedup achieved with online compiled pack functions

N
u
m

b
e
r

o
f
o

c
c
u
ra

n
c
e

s

0

20

40

60

250 500 750 1000

0

20

40

60

0 10000 20000 30000
Number of DDT reuses required to amortize commit time

N
u
m

b
e
r

o
f
o

c
c
u
ra

n
c
e

s

0

20

40

60

250 500 750 1000

Figure 9: Histogram of necessary number of
datatype reuses, until the higher performance of
runtime compiled datatypes amortizes the higher
cost of runtime compilation. The head of the dis-
tribution is plotted again in the smaller plot, with a
different scale on the x-axis.

pack functions in less than one-seventh of the time it takes
to do the same with MPI, some can be even be packed in
1/38th MPI’s pack time. However, even with those high
speedups compared to Cray MPI, the absolute improve-
ment due to the usage of runtime-compiled pack functions
is around 100µs. Therefore it is also important to take the
commit overhead (the time for the runtime compilation) into
account. The commit overhead lies between 1 and 10ms for
runtime-compiled DDTs in MILC, while it is below 1µs for
MPI. In Figure 9, we analyze how often each datatype would
have to be reused in order to amortize the commit overhead.
The tail of this distribution is quite large, therefore we plot
the head separately, with a different scale on the x-axis.

We see that 50% of the datatypes in MILC need to be
reused at least 520 times, for runtime compilation to pay off
(a typical MILC run consists of thousands of iterations with
the same datatypes). A smaller number of types (e.g., some
very small types) requires a very high number of reuses. This
shows that runtime compilation is not always beneficial and
the hints discussed in Section 2.5 may guide the decision
what method to apply. It is vital to know how much time
can be saved by packing a datatype in a more efficient man-
ner and how often it will be reused. The first information
can be estimated using the size of the datatype, while the
second information has to be supplied by the user with info
arguments, as proposed earlier.

4. RELATED WORK
Since some MPI implementations struggle to fulfill ele-

mentary performance expectations when handling derived
datatypes [6], their adoption is not widespread yet. More
and more success stories about improving performance us-
ing MPI DDTs are reported [1,8] and tools are available that
enable users to quickly change their code from using manual
pack loops to leveraging derived datatypes [10].

There have been many publications on performance im-
provements of MPI derived datatypes. The näıve approach
to interpreting datatypes is to represent them as a tree,
where leaf nodes represent primitive datatypes and complex
datatypes such as vectors or structs are represented by inter-
nal nodes. A pack operation is performed by traversing the
tree post-order, recursively calling the interpreter for each

intermediate node. The interpreter must keep track of the
current input and output buffer positions, which are updated
whenever a leaf node is encountered and data is actually
moved. The drawback of this method is that inner nodes
have to be visited multiple times and the recursive function
calls incur a high overhead. Another näıve approach is to
flatten the datatype completely. This inflates its represen-
tation in memory as it does not utilize regularity present
in the datatype. Therefore hybrid approaches have been
proposed [7, 17], where small sub-trees are flattened on the
fly during packing. These approaches partially transform
the datatype tree into a stack which can be processed iter-
atively. Jenkins et al. proposed a different representation of
datatypes which is suitable for processing by a pack-kernel
running on a GPU as it exposes available parallelism [9].
Furthermore, Byna et al. show that tuning the datatype in-
terpreter for the memory-hierarchy on the target machine
(cache and page sizes, etc.) can lead to performance im-
provements [3]. They do this by providing different packing
functions which are parametrized with information about
the actual datatype as well as information about the mem-
ory hierarchy of the node. However, the packing functions
itself are compiled together with the rest of the MPI code,
so this requires branching to select the correct pack variant
at runtime and some optimizations, such as loop unrolling,
can only be performed for a fixed number of cases.

The runtime compilation approach can be used to imple-
ment all of these optimizations. However, in contrast to the
previous work, we compile the datatypes at runtime when
all parameters are available, so we can generate specialized
native pack functions.

5. CONCLUSIONS
In this paper we demonstrate that runtime compilation of

MPI datatypes can lead to speedups up to an order of mag-
nitude in (un)pack performance over the interpretation ap-
proach. This makes raw datatype packing performance com-
petitive to manual packing code. The performance comes
at a one-time compilation cost of a few milliseconds per
datatype at commit time, which we argue is well within the
user’s expectations and the intent of MPI Type commit.

Given these results we believe there is a strong case for
adding support for runtime datatype compilation to MPI
implementations. We propose adding a runtime datatype
compiler with an LLVM backend, perhaps based on our
code, to MPI implementations as an alternative to the cur-
rent interpreted approach. In addition we propose adding
the configure switch --with-llvm=<path>. If the path to
LLVM is given, the datatype compiler is compiled into the
MPI runtime and used to compile datatypes at commit time.
This configure option would also have the added benefit of
paving the way for other interesting uses of runtime and JIT
compilation in MPI implementations in the future.

With runtime compilation techniques, like those outlined
in this paper, we believe datatype performance will finally
become superior to manual pack code in the vast num-
ber of cases. As the performance hit incurred by using
datatypes on most systems disappear and datatypes become
more widely used, investments in gather-scatter hardware
that supports non-contiguous communication becomes vi-
able, leading to even greater performance.

6. REFERENCES
[1] E. Bajrović and J. L. Träff. Using MPI derived

datatypes in numerical libraries. In EuroMPI’11,
pages 29–38. 2011.

[2] C. Bernard, M. Ogilvie, et al. Studying quarks and
gluons on MIMD parallel computers. Int. Journal of
High Performance Computing Applications,
5(4):61–70, 1991.

[3] S. Byna, W. Gropp, X.-H. Sun, and R. Thakur.
Improving the performance of MPI derived datatypes
by optimizing memory-access cost. In ICCC’03, 2003.

[4] L. Carrington, D. Komatitsch, et al. High-frequency
simulations of global seismic wave propagation using
SPECFEM3D GLOBE on 62K processors. In
ACM/IEEE conference on Supercomputing, 2008.

[5] R. F. V. der Wijngaart and P. Wong. NAS parallel
benchmarks version 2.4. Technical report, NAS
Technical Report NAS-02-007, 2002.

[6] W. Gropp, T. Hoefler, R. Thakur, and J. L. Träff.
Performance expectations and guidelines for MPI
derived datatypes. In EuroMPI’11. 2011.

[7] W. Gropp, E. Lusk, and D. Swider. Improving the
performance of MPI derived datatypes. In Proceedings
of the Third MPI Developers and Users Conference.
MPI Software Technology Press, 1999.

[8] T. Hoefler and S. Gottlieb. Parallel zero-copy
algorithms for fast fourier transform and conjugate
gradient using MPI datatypes. In EuroMPI’10
Proceedings, pages 132–141. 2010.

[9] J. Jenkins, J. Dinan, et al. Enabling fast,
noncontiguous GPU data movement in hybrid MPI +
GPU environments. In CLUSTER 2012, 2012.

[10] F. Kjolstad, T. Hoefler, and M. Snir. Automatic
datatype generation and optimization. In PPOPP’12
Poster Paper. ACM, 2012.

[11] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In Code Generation and Optimization,
2004. CGO 2004. International Symposium on, 2004.

[12] MPI Forum. MPI: A Message-Passing Interface
Standard. Version 3. available at:
http://www.mpi-forum.org (Sept. 2012).

[13] D. A. Reed, L. M. Adams, and M. L. Patrick. Stencils
and problem partitionings: Their influence on the
performance of multiple processor systems. IEEE
Transactions, 100(7):845–858, 1987.

[14] T. Schneider, R. Gerstenberger, and T. Hoefler.
Micro-applications for communication data access
patterns and MPI datatypes. In EuroMPI’12, 2012.

[15] W. C. Skamarock and J. B. Klemp. A time-split
nonhydrostatic atmospheric model for weather
research and forecasting applications. J. Comput.
Phys., 227(7):3465–3485, 3 2008.

[16] M. ten Bruggencate and D. Roweth. DMAPP — an
API for one-sided program models on Baker systems.
In Cray User Group Conference, 2010.

[17] J. L. Träff, R. Hempel, H. Ritzdorf, and
F. Zimmermann. Flattening on the fly: Efficient
handling of MPI derived datatypes. In
EuroPVM/MPI’99, pages 109–116. 1999.

http://www.mpi-forum.org

	Introduction
	Runtime Datatype Compilation
	Packing Contiguous Data
	Compiling Vector Datatypes
	Compiling Irregular Datatypes
	Compiling Hierarchical Datatypes
	Performance Hints to MPI

	Experiments
	Micro-Applications
	Application Benchmarks

	Related Work
	Conclusions
	References

