
Exploring GPU-to-GPU Communication:
Insights into Supercomputer Interconnects

Daniele De Sensi
Sapienza University of Rome

desensi@di.uniroma1.it

Lorenzo Pichetti
University of Trento

lorenzo.pichetti@unitn.it

Flavio Vella
University of Trento
flavio.vella@unitn.it

Tiziano De Matteis
Vrije Universiteit Amsterdam

t.de.matteis@vu.nl

Zebin Ren
Vrije Universiteit Amsterdam

z.ren@vu.nl

Luigi Fusco
ETH Zurich

luigi.fusco@inf.ethz.ch

Matteo Turisini
CINECA

m.turisini@cineca.it

Daniele Cesarini
CINECA

d.cesarini@cineca.it

Kurt Lust
University of Antwerp

kurt.lust@uantwerpen.be

Animesh Trivedi∗
IBM Research Europe

animesh.trivedi@ibm.com

Duncan Roweth
HPE Cray

duncan.roweth@hpe.com

Filippo Spiga
NVIDIA

fspiga@nvidia.com

Salvatore Di Girolamo
NVIDIA

sdigirolamo@nvidia.com

Torsten Hoefler
ETH Zurich

htor@inf.ethz.ch

Abstract—Multi-GPU nodes are increasingly common in the
rapidly evolving landscape of exascale supercomputers. On these
systems, GPUs on the same node are connected through dedicated
networks, with bandwidths up to a few terabits per second.
However, gauging performance expectations and maximizing
system efficiency is challenging due to different technologies,
design options, and software layers. This paper comprehensively
characterizes three supercomputers — Alps, Leonardo, and
LUMI — each with a unique architecture and design. We
focus on performance evaluation of intra-node and inter-node
interconnects on up to 4,096 GPUs, using a mix of intra-node
and inter-node benchmarks. By analyzing its limitations and
opportunities, we aim to offer practical guidance to researchers,
system architects, and software developers dealing with multi-
GPU supercomputing. Our results show that there is untapped
bandwidth, and there are still many opportunities for optimiza-
tion, ranging from network to software optimization.

I. INTRODUCTION

Supercomputers are a key infrastructure enabling advance-
ments in several science domains and transformative societal
changes. New workloads’ computing requirements, ranging
from machine learning (ML) to scientific computing and
extending to big-data analytics, are driving supercomputer
architecture evolution. Due to their massive parallelism, energy
efficiency, and memory bandwidth, GPUs became the core of
such evolution, characterized by the development of multi-
GPU nodes and high-performance intra-node interconnection
networks. Nowadays, exascale [1] and pre-exascale systems
in the Top500 [2] are equipped with up to 8 GPUs per node,
connected with fast dedicated networks with bandwidth up to
3.6 Tb/s per direction [3]. At the same time, due to a steady
increase in computing and memory requirements, the number
of nodes increased to tens of thousands of nodes [4], leading
to systems with up to 75,000 GPUs [5], [6].

Moving data efficiently across such a high number of GPUs
is challenging for multiple reasons. First, there is a significant
interconnect, topology, and hardware diversity, thus making
the mapping of communications to the underlying system

∗Work done while at Vrije Universiteit Amsterdam.

non-trivial. Secondly, on the software side, programmers can
rely on different software solutions, ranging from manually
copying data between GPU memory on a single node to using
transparent and higher-level GPU-Aware solutions such as
MPI [7] or NCCL/RCCL [8], [9] (referred as *CCL in the
rest of the paper) across nodes. However, the most effective
approach for managing a large number of GPUs and the
maturity level of the software is still unclear. Lastly, large-
scale network-related effects such as congestion and network
noise [10], [11], [12] can severely impact the scalability
when increasing the number of GPUs, thus hampering the
computational power and high bandwidth of these systems.

To investigate the aforementioned challenges, we com-
prehensively characterize three supercomputers with different
architectures: Alps (NVIDIA H100 GPUs and HPE Cray
Slingshot interconnect [12]), Leonardo (NVIDIA A100 GPUs
and NVIDIA InfiniBand HDR interconnect), and LUMI (AMD
InstinctTM MI250X GPUs and HPE Cray Slingshot intercon-
nect). We systematically benchmark the performance of intra-
node GPU networks (Sec. III and Sec. IV), and inter-node
networks (Sec. V and Sec. VI) up to 4,096 GPUs on the three
supercomputers. Our study includes a detailed analysis of data
movement performed through explicit device-to-device copies,
*CCL, and GPU-Aware MPI. Lastly, we evaluate the impact
of network noise on GPU-GPU data movements (Sec. VI),
showing that it can severely impact workload scalability.

This paper provides the first at-scale study characterizing
multi-GPU interconnect performance across hardware tech-
nologies and diverse communication APIs and software stacks.
We spotlight several sources of inefficiencies, ranging from
routing to communication libraries tuning. We show that the
best way to move data between GPUs depends on several
factors like transfer size, communication pattern, and number
of GPUs, and might change across systems. We present
eight key observations, offering valuable insights to system
architects, researchers, practitioners, and software developers
to optimize data movements in large-scale multi-GPU systems
and exploit current and upcoming systems to their fullest.

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

ar
X

iv
:2

40
8.

14
09

0v
2

 [
cs

.D
C

]
 1

5
N

ov
 2

02
4

Alps (#6 in Top500) Leonardo (#7 in Top500) LUMI (#5 in Top500)

CPU 72-core NVIDIA Grace 32-core Intel Ice Lake Xeon 8358 64-core AMD Trento EPYC 7A53

GPU 4x NVIDIA Hopper H100 4x NVIDIA Ampere A100 (special SKU) 4x AMD MI250X (8 GCDs)

NICs 4x HPE Cray 200 Gb/s Cassini-1 2x dual-port NVIDIA Connect-X6 (100 Gb/s per
port) (i.e., 4x 100 Gb/s ports)

4x HPE Cray 200 Gb/s Cassini-1

Intra-node Interconnect NVLink 4.0, 6x links towards any other
GPU (1.2 Tb/s between any pair)

NVLink 3.0, 4x links towards any other GPU (800
Gb/s between any pair)

Between one and four 400 Gb/s Infinity Fabric
links towards other GCDs (see Fig. 2)

Inter-node Interconnect HPE Cray Slingshot 11. Dragonfly
topology

NVIDIA Infiniband HDR. Dragonfly+ topology
with 23 groups. Each group is a 2-level fat-tree

HPE Cray Slingshot 11. Dragonfly topology with
24 groups

Software Environment Cray MPICH v8.1.28, libfabric
v1.15.2, CUDA v12.3,
aws-ofi-nccl plugin

Open MPI v4.1.4 (relying on UCX v1.13.0),
CUDA v12.1

Cray clang v16.0.1, Cray MPICH v8.1.27,
libfabric v1.15.2, ROCM v5.7.1.1,
aws-ofi-rccl plugin (v1.4)

TABLE I: Main characteristics of the analyzed systems. Top500 rankings from June 2024 list.

II. SYSTEMS DESCRIPTION

In the following, we describe the main characteristics of the
three analyzed systems, and we summarize them in Table I.
Since all the analyzed interconnects are full-duplex, when we
refer to intra-node and inter-node network bandwidth, we will
always report the unidirectional bandwidth and express it in
bits per second for consistency.

A. Alps

Alps is a 270 PFlop/s supercomputer ranked 6th in the
Top500 (June 2024). It is deployed by CSCS [13] and currently
under provisioning. Thus, some presented results might be
subject to further tuning in the upcoming months before
opening to production. For this paper, we used the early access
Santis partition [14], where we had access to 512 nodes.

Node architecture Each node is composed of four GH200
Grace Hopper Superchip [15] connected in an all-to-all topol-
ogy using NVLink 4.0. Six 200 Gb/s links connect each
GH200 pair, for a total of 1.2 Tb/s between any GPU pair
(see Fig. 1a). Every GH200 has 96 GB HBM3 and 120
GB LPDDRX5 memory. Every node acts as a single NUMA
system (composed of 8 NUMA domains), with 288 CPU cores
and 4 GPUs.

Inter-node connectivity Each node has one HPE Cray
Cassini-1 200 Gb/s Network Interface Card (NIC) for each
GH200. Nodes are connected in a Dragonfly topology [16]
through an HPE Cray Slingshot-11 network [12], [17]. Each
switch has 16 ports to endpoints, 31 ports to other switches
within the same Dragonfly group, and 17 ports to switches in
other Dragonfly groups.

B. Leonardo

Leonardo [18] is a 240 PFlop/s supercomputer, ranked
7th on the Top500 [2] (June 2024). It is owned by the
EuroHPC Joint Undertaking and hosted by CINECA. We
consider Leonardo’s Booster GPU partition, consisting of
3,456 computing nodes.

Node architecture Each node is equipped with a single
socket 32-core Intel Xeon® 8358 CPU and four NVIDIA
A100 TensorCore GPUs [19] (13,824 GPUs in total). Each
node has 512 GB CPU memory, organized in eight DDR4
slots, and 64 GB HBM2e memory per GPU. Within a node,

GPUs are connected through NVIDIA NVLink 3.0, with each
GPU connected to each of the other three GPUs through four
200 Gb/s links (see Fig. 1b). The intra-node communication
is completed by a 256 Gb/s 16-lane PCIe® Gen4.0 bus per
GPU, used to communicate with the host CPU and with the
NIC.

NIC

CPU

72 cores

NVLink 4.0 (200 Gb/s)
NVLink C2C (3.6 Tb/s)

16x PCI-E 5.0 (512 Gb/s)
Slingshot-11 (200 Gb/s)

CPU

72 cores

GPU GPU

GPU
CPU

72 cores
GPU

NIC NIC

CPU

72 cores

NIC

(a) Alps.

CPU

32 cores

NIC NIC

NIC NIC

GPU

GPU

GPU

GPU

NVLink 3.0 (200 Gb/s)
16x PCI-E 4.0 (256 Gb/s)
Infiniband HDR 100 (100 Gb/s)

CPU

32 cores

NIC NIC

NIC NIC

GPU

GPU

GPU

GPU

NVLink 3.0 (200 Gb/s)
16x PCI-E 4.0 (256 Gb/s)
Infiniband HDR 100 (100 Gb/s)

(b) Leonardo.

Fig. 1: Alps and Leonardo (Booster) node architectures.

Inter-node connectivity Nodes are interconnected through
an InfiniBand HDR network, and each node is equipped with
two 200 Gb/s dual port NVIDIA Connect-X6 NICs. Each node
thus has four 100 Gb/s network ports, all connected to the
same switch at the time of writing. For this paper, we consider
them as being four separate NICs. Nodes are connected
through a Dragonfly+ [20], with each group containing 180
nodes and structured as a two-level fat tree. Each group has
18 spine and 18 leaf switches. Switches have 40 200Gb/s ports
(each of which can be configured as 2 100Gb/s ports). Leaf
switches connect 40 100Gb/s ports to 10 nodes (4 GPUs per
node) and 18 200 Gb/s ports to spine switches (with 2 200Gb/s
ports unused). Spine switches connect 18 200Gb/s ports to
leaf switches and 22 200Gb/s ports to other spine switches in
different Dragonfly+ groups.

C. LUMI

LUMI is a 380 PFlop/s supercomputer ranked 5th in the
Top500 (June 2024). It is owned by the EuroHPC Joint
Undertaking and hosted by CSC [21]. This paper considers
the LUMI-G GPU partition consisting of 2,978 nodes.

8 cores
(8-15)

8 cores
(0-7)

N
U

M
A 0

8 cores
(16-23)

8 cores
(24-31)

N
U

M
A 1

8 cores
(40-47)

8 cores
(32-39)N

U
M

A
2

8 cores
(48-55)

8 cores
(56-63)N

U
M

A
3

NIC 0 NIC 1

NIC 3 NIC 2

GCD 1 GCD 3

GCD 5

GCD 4

GCD 2

Infinity Fabric GPU-GPU (400 Gb/s)
Infinity Fabric GPU-CPU (288 Gb/s)
Slingshot-11 Interconnect (200 Gb/s)

GCD 6

GCD 7

GCD 0

Fig. 2: LUMI-G node architecture.

Node architecture Each node has one 64-core AMD
EPYCTM 7A53 “Trento” CPU, configured as 4 NUMA do-
mains, each accessing 128 GB of DDR4 memory. Each node
also contains 4 AMD MI250X GPUs [22], each with 2
Graphics Compute Dies (GCDs), for a total of 8 GCDs per
node. Each die has access to a 64 GB slice of HBM memory
for a total of 128 GB memory per MI250x module. Because
one module is seen as two separate GPUs from a software
perspective, for the rest of this paper, we consider a LUMI
node as an 8 GPU node. Each GCD is connected to a NUMA
node through a 288 Gb/s AMD Infinity FabricTM (IF) link.
GCDs are connected to each other with one to four 400 Gb/s
IF links, as shown in Fig. 2.

Inter-node connectivity Each MI250X module is con-
nected to a 200 GiB/s Cassini-1 NIC. Nodes are connected
in a Dragonfly topology through an HPE Cray Slingshot-
11 interconnect composed of 24 groups, with 124 nodes per
group. Each node is connected to two different switches in the
same group. Each switch has 16 ports to endpoints, 31 ports
to other switches within the same Dragonfly group, and 17
ports to switches in other Dragonfly groups.

III. INTRA-NODE POINT-TO-POINT PERFORMANCE

We start our analysis by assessing the performance of
the intra-node GPU-GPU interconnection for point-to-point
communications. We first describe the benchmarking method-
ology (Sec. III-A) and the performance tuning performed
on each system (Sec. III-B). We then analyze the point-to-
point performance (Sec. III-C), focusing on LUMI intra-node
architecture (Sec. III-D).

A. Benchmarking Methodology

In all the experiments we have a separate MPI process
managing each GPU in the system. We set the affinity of the
processes so that each MPI rank manages the GPU closest to
the core it is mapped to. We run each experiment between 100
times and 1,000 times (depending on the transfer size). For
experiments involving collective communication, we report
the maximum time (or minimum goodput) across all the
participating ranks [23]. We do not include communicators’
creation time. Unless specified otherwise, we always refer to
unidirectional bandwidth in Gb/s. We analyze the performance
of point-to-point and collective communication using different

mechanisms and techniques to transfer data between GPUs.
Namely, we consider:

• Trivial Staging: We copy buffers to and from the GPU
memory to the host memory. Then, we transfer data between
processes using MPI. This is a trivial implementation to use
as a baseline. We pinned the memory but implemented no
pipelining or parallel copies between memories. Data thus
moves in a store-and-forward fashion. For point-to-point
transfers, we can estimate the peak goodput by summing
the time required to transfer the data from device memory
to host memory and the time to copy the data between two
host memory buffers.

• Device-Device Copy: Buffers are copied directly from the
device to the device memory. We share memory handles
across the processes managing the different GPUs, allowing
them to transfer data directly between GPU memories. For
the alltoall collective, each GPU copies data to all the other
GPUs asynchronously to overlap the copies.

• *CCL: We transfer data between GPUs using NCCL [8],
[24] (on Leonardo and Alps) or RCCL [9], [25] (on LUMI).

• GPU-Aware MPI: We transfer data using GPU-Aware
MPI [26].

We developed our benchmark from scratch due to some lim-
itations of existing benchmarks. OSU [27] lacks benchmarks
for explicit device-device copy, and nccl-/rccl-tests [28], [29]
only support *CCL. Also, both do not report individual per-
iteration timings, which are needed to assess network noise
and performance variability (Sec. VI). Creating our benchmark
ensured consistency across all communication mechanisms an-
alyzed. We used MPI_Wtime for timing individual iterations,
with resolutions of 25ns on LUMI and Leonardo, and 30ns
on Alps (measured experimentally). The timing excludes one-
time operations like buffer allocation and handles exchange.
The benchmark synchronizes with the GPU before stopping
the timer to ensure full data receipt, except for MPI, where this
is implicit. For *CCL, the timing includes the group start/end.
This is consistent with nccl-/rccl-tests. We publicly released
the code as part of the paper artifact.

B. Performance Tuning

We tuned the performance of all analyzed systems, as
the initial default configuration did not fully leverage their
potential. This involved searching for and setting environment
variables and analyzing their impact on performance.

*CCL On Alps and LUMI we forced *CCL to ig-
nore the CPU affinity set by Slurm (by setting the
NCCL_IGNORE_CPU_AFFINITY to 1), obtaining up to 1.6x
performance improvement on alltoall and up to 6x on allreduce
starting from two nodes. We further improved performance
by 2x on alltoall and 3x on allreduce, by increasing the
distance at which the GPU can use Direct RDMA when com-
municating with the NIC (NCCL_NET_GDR_LEVEL=3). On
LUMI, we set NCCL_NCHANNELS_PER_PEER=32 for intra-
node point-to-point tests, which led to a 3.5x performance
improvement.

1B 8B 64
B

51
2B 4K

iB
32

KiB
25

6K
iB

2M
iB

16
MiB

12
8M

iB
1G

iB
0

200

400

600

800

1000

1200

Go
od

pu
t (

Gb
/s

)

Expected Goodput

Exp. Trivial Gdpt

*CCL
Trivial Staging

GPU-Aware MPI

1B 8B 64B 512B 4KiB 32KiB
0

10

20

30

Ru
nt

im
e

(u
s)

(a) Alps

1B 8B 64
B

51
2B 4K

iB
32

KiB
25

6K
iB

2M
iB

16
MiB

12
8M

iB
1G

iB
0

200

400

600

800

Go
od

pu
t (

Gb
/s

)

Expected Goodput

Exp. Trivial Gdpt

*CCL
Trivial Staging

GPU-Aware MPI
Device-Device Copy

1B 8B 64B 512B 4KiB 32KiB
0

10

20

30

Ru
nt

im
e

(u
s)

(b) Leonardo

1B 8B 64
B

51
2B 4K

iB
32

KiB
25

6K
iB

2M
iB

16
MiB

12
8M

iB
1G

iB
0

250

500

750

1000

1250

1500

Go
od

pu
t (

Gb
/s

)

Expected Goodput

Exp. Trivial Gdpt

*CCL
Trivial Staging

GPU-Aware MPI
Device-Device Copy

1B 8B 64B 512B 4KiB 32KiB
0

10

20

30

Ru
nt

im
e

(u
s)

(c) LUMI

Fig. 3: GPU-GPU unidirectional transfers performance. For the sake of readability, we use different y-axis ranges.

GPU-Aware MPI On Alps, to improve MPICH perfor-
mance on small point-to-point transfers on a single node,
we forced the use of device-device copies regardless of the
transfer size (MPICH_GPU_IPC_THRESHOLD=1), reducing
runtime by 2x for transfers smaller than 4 KiB. We in-
creased the size of the GPU-attached staging buffer used by
MPICH for GPU-kernel-based optimizations for the allreduce
to 128 MiB (MPICH_GPU_ALLREDUCE_BLK_SIZE), which
led to a 50% improvement on single-node allreduce. On
LUMI, we disabled System Direct Memory Access (SDMA
– HSA_ENABLE_SDMA=0), increasing performance by up
to 3x. On Leonardo, UCX was not loading GDRCopy [30]
because it was installed in the wrong path. We fixed this by
adding the correct path to LD_LIBRARY_PATH, increasing
performance for small messages up to 6x.

The optimization of some of these parameters involved
discussions with HPC site support teams and Cray/HPE,
NVIDIA, and AMD engineers (e.g., *CCL parameters). Others
were optimized by analyzing preliminary data. For instance,
the runtime on Alps did not increase monotonically with
message size, prompting further investigation and tuning of
the IPC threshold. Understanding and resolving some of these
unusual behaviors took several days of investigation.

Observation 1: Achieving good performance on multi-GPU
systems requires non-trivial tuning, which depends on the
system, message size, communication library, and number
of nodes. The default choices made by *CCL and GPU-
Aware MPI are not always optimal, and manual tuning can
improve performance up to an order of magnitude.

C. Point-to-point Latency and Goodput

In Fig. 3, we report the goodput between two GPUs on
the same node, measured through a ping-pong microbench-
mark for different transfer sizes. We report the unidirectional
goodput (in Gb/s), defined as the number of bytes in the
buffer divided by half the runtime. The inner plot reports the
runtime (in microseconds) for small messages. Each data point
represents the mean across the experiments, and the width of
the shaded area around the line is the interquartile range (for

some plots it is too small to be visible). We report with dashed
horizontal lines both the GPU-GPU unidirectional nominal
goodput and the trivial staging expected goodput. For example,
on Leonardo, any GPU pair is connected with four 200 Gb/s
links (see Fig. 1b), for a total of 800 Gb/s nominal goodput
per direction between any pair of GPUs.

On LUMI, the peak GPU-GPU goodput depends on the
specific GPU selected. For this experiment, we selected GPUs
0 and 1, connected through four 400 Gb/s Infinity Fabric links.
In Sec. III-D, we analyze the performance for different GPUs
combinations. Moreover, disabling SDMA enables GPUs to
use more than one Infinity Fabric link at a time [5]. On Alps,
we did not run the experiments involving explicit device to
device copies since GPU peer access is not enabled on the
nodes at the time being.

Goodput First, we observe that the goodput of trivial
staging is up to one order of magnitude lower than the other
implementations due to the low bandwidth when moving data
between host and device memory. *CCL, MPI GPU-Aware,
and device-device copies provide a comparable goodput. On
Leonardo, we observe a goodput for GPU-Aware on medium-
sized messages that is up to 2x higher than that of NCCL.

Latency When analyzing the runtime for small messages,
we observe similar performance for *CCL and MPI on Alps,
but a large performance gap on Leonardo and LUMI. On
Leonardo, this is due to the use of GDRCopy [30]. On
LUMI, Cray MPICH transfers small buffers between GPUs
on the same node by copying them through host memory
(rather than doing device-device copy), using an optimized
memcpy, where the CPU issues load/store operations directly
to GPU HBM. In contrast, on NVIDIA GPUs, CPU load/store
operations to GPU memory are not permitted, resulting in
higher latency on Alps.

Observation 2: GPU-Aware MPI provides the highest
goodput for intra-node point-to-point transfers on all the
analyzed systems. For small transfers, the optimal solution
changes across the systems, depending on architectural
features and specific optimization implemented by MPI.

D. Impact of GPU Location on LUMI

On LUMI, each node has 8 GPUs, connected to each
other with a different number of Infinity Fabric links, ranging
from one to four (see Sec. II-C). We report in Fig. 4 the
unidirectional goodput between GPU 0 and the other seven
GPUs on a node when transferring a 1 GiB buffer. We denote
with a dashed horizontal line the nominal goodput for each
GPU pair, computed by considering the single path with the
highest bandwidth between the two GPUs.

0 to 1 0 to 2 0 to 3 0 to 4 0 to 5 0 to 6 0 to 70

250

500

750

1000

1250

1500

Go
od

pu
t (

Gb
/s

)

RCCL
Trivial Staging
GPU-Aware MPI
Device-Device Copy

Fig. 4: Unidirectional goodput from GPU 0 on LUMI to other
GPUs on the same node, for a 1 GiB buffer.

As expected, we do not observe any difference for the trivial
staging, since data is not moved directly between GPUs but
across the host memory. Both GPU-Aware MPI and the device-
device copy achieve around 70% of the nominal goodput
on any GPU pair. On the other hand, in some cases (e.g.,
when GPU 0 and 5 communicate) RCCL achieves less than
half the goodput of GPU-Aware MPI and device-device copy.
By analyzing the data more in detail, we can observe that,
although GPU-Aware MPI and device-device copy achieve the
same goodput both towards GPU 6 and 7 (towards which GPU
0 has the same nominal goodput), RCCL achieves a much
higher goodput towards GPU 6 compared to GPU 7.

By analyzing RCCL debug information1, we identified it as-
sumes a lower available bandwidth towards GPU 7 compared
to 6, and thus does not fully exploit the available bandwidth.
We believe this might happen because the available bandwidth
is estimated considering the number of hops rather than the
number of paths connecting the two GPUs, which might be
helpful for collective communications, where multiple GPUs
concurrently communicate, sharing the available links. How-
ever, this setup underutilizes the GPU-GPU interconnect for
sparser communication patterns.

Observation 3: On LUMI, RCCL point-to-point communi-
cation primitives do not correctly determine the bandwidth
available between GPUs on the same node, thus underuti-
lizing the available bandwidth.

1This can be done by setting the environment variables
NCCL_DEBUG_SUBSYS=INIT,GRAPH and NCCL_DEBUG=INFO.

IV. INTRA-NODE COLLECTIVES PERFORMANCE

We now focus on intra-node collective performance, by an-
alyzing expected and measured goodput for alltoall (Sec. IV-A
and Sec. IV-B) and allreduce (Sec. IV-C and Sec. IV-D).

A. Alltoall Expected Goodput

For collectives, we define the goodput as the buffer size
divided by the runtime. To compute the expected goodput,
we determined the edge forwarding index [31] of the graph
corresponding to the intra-node GPUs connectivity. The edge
forwarding index is defined as the maximum number of paths
crossing any edge and gives an estimate of the maximum load
across any network link and, thus, of the worst-case peak
bandwidth (e.g., for an alltoall). On Alps and Leonardo, GPUs
are fully connected, and each link is crossed by only one path
(i.e., the maximum edge forwarding index is one), and we
expect a peak goodput equal to the GPU injection bandwidth.

On LUMI, assuming data is routed between GPUs using
shortest paths, the most loaded link is the one between GCD
1 and 5 (and that between GCD 7 and 3), which is used in
four separate paths. Thus, because each IF link has a 400 Gb/s
bandwidth, we can expect a 100 Gb/s peak goodput between
any pair of GCDs during an alltoall. Because any GCD can
send data on six different IF links simultaneously, we expect a
peak alltoall goodput of 600 Gb/s. It is worth noting that each
GCD on the MI250X GPUs has the same injection bandwidth
as one A100 GPU. However, the per-GPU alltoall goodput on
LUMI is lower because the GCDs on the same node are not
fully connected and, thus, the graph describing the intra-node
connectivity has a higher edge forwarding index.

B. Alltoall Measured Goodput

We report in Fig. 5 the measured goodput for an alltoall
between all GPUs on a node, and the expected goodput
(denoted with a dashed horizontal line). While MPI and RCCL
natively provide an alltoall implementation, NCCL does not,
and we implemented the alltoall with a trivial algorithm where
each GPU sends the data to all the other nodes at the same time
(as suggested in the documentation [32]). We used the same
algorithm to implement the alltoall using device-device copies.
Moreover, we observed no performance difference when com-
paring RCCL native and trivial alltoall implementations.

On Alps and LUMI, *CCL provides the best performance
for large transfers since *CCL collectives are specifically op-
timized for the target systems. For example, communications
are mapped according to the specific topology, and the number
of in-flight data chunks during pipelined operations is tuned
by considering the bandwidth available between GPU pairs.
Such fine-grained optimizations are not performed by MPI,
which thus does not entirely exploit the bandwidth of the intra-
node GPU interconnect. On Leonardo, *CCL provides slightly
lower performance than MPI. For small transfers, on Alps and
Leonardo the performance of *CCL is comparable with that of
MPI. On the other hand, on LUMI, for small transfers GPU-
Aware MPI is up to 3x faster than *CCL, consistent with what
we observed for point-to-point transfers.

1B 8B 64
B

51
2B 4K

iB
32

KiB
25

6K
iB

2M
iB

16
MiB

12
8M

iB
1G

iB
0

1000

2000

3000

Go
od

pu
t (

Gb
/s

)

Expected Goodput

*CCL
Trivial Staging

GPU-Aware MPI

1B 8B 64B 512B 4KiB 32KiB
0

50

100

Ru
nt

im
e

(u
s)

(a) Alps

1B 8B 64
B

51
2B 4K

iB
32

KiB
25

6K
iB

2M
iB

16
MiB

12
8M

iB
1G

iB
0

500

1000

1500

2000

2500

Go
od

pu
t (

Gb
/s

)

Expected Goodput

*CCL
Trivial Staging

GPU-Aware MPI
Device-Device Copy

1B 8B 64B 512B 4KiB 32KiB
0

50

100

Ru
nt

im
e

(u
s)

(b) Leonardo

1B 8B 64
B

51
2B 4K

iB
32

KiB
25

6K
iB

2M
iB

16
MiB

12
8M

iB
1G

iB
0

100

200

300

400

500

600

Go
od

pu
t (

Gb
/s

)

Expected Goodput

*CCL
Trivial Staging

GPU-Aware MPI
Device-Device Copy

1B 8B 64B 512B 4KiB 32KiB
0

50

100

Ru
nt

im
e

(u
s)

(c) LUMI

Fig. 5: Intra-node alltoall performance. For the sake of readability, we use different y-axis ranges.

1B 8B 64
B

51
2B 4K

iB
32

KiB
25

6K
iB

2M
iB

16
MiB

12
8M

iB
1G

iB
0

1000

2000

3000

Go
od

pu
t (

Gb
/s

)

Expected Goodput

*CCL
Trivial Staging

GPU-Aware MPI

1B 8B 64B 512B 4KiB 32KiB
0

50

100

Ru
nt

im
e

(u
s)

(a) Alps

1B 8B 64
B

51
2B 4K

iB
32

KiB
25

6K
iB

2M
iB

16
MiB

12
8M

iB
1G

iB
0

500

1000

1500

2000

2500

Go
od

pu
t (

Gb
/s

)

Expected Goodput

*CCL
Trivial Staging

GPU-Aware MPI
Device-Device Copy

1B 8B 64B 512B 4KiB 32KiB
0

50

100

Ru
nt

im
e

(u
s)

(b) Leonardo

1B 8B 64
B

51
2B 4K

iB
32

KiB
25

6K
iB

2M
iB

16
MiB

12
8M

iB
1G

iB
0

200

400

600

800

Go
od

pu
t (

Gb
/s

)

Expected Goodput

*CCL
Trivial Staging

GPU-Aware MPI
Device-Device Copy

1B 8B 64B 512B 4KiB 32KiB
0

50

100

Ru
nt

im
e

(u
s)

(c) LUMI

Fig. 6: Intra-node allreduce performance. For the sake of readability, we use different y-axis ranges.

C. Allreduce Expected Goodput

On Alps and Leonardo, since each GPU is directly con-
nected to the other GPUs on the same node and can receive
from all the other GPUs at the same time, the optimal allreduce
algorithm would consist of a pipelined ternary tree reduce
(with one of the GPUs as the root and the other three as leaves)
followed by a ternary tree broadcast. We thus estimate the peak
goodput as the sum of the bandwidth across all the outgoing
links from a GPU. On LUMI, since the GPUs are not fully
connected, the optimal algorithm for large messages would
be the Rabenseifner algorithm, with a ring reduce-scatter
followed by a ring allgather [33]. The specific connectivity
between the GPUs allows for four edge-disjoint bidirectional
rings [22], each using 400 Gb/s Infinity Fabric links. Because
the Rabenseifner algorithm sends twice the number of bytes
in the buffer, we can thus expect 800 Gb/s peak goodput.

D. Allreduce Measured Goodput

In Fig. 6, we show the allreduce performance for different
message sizes. On Alps and Leonardo, *CCL outperforms MPI
at any transfer size. On LUMI, on the other hand, GPU-Aware
MPI is characterized by the lowest runtime for small transfers
whereas, although *CCL performs best on large transfers, its
performance is far from the expected peak. This is consistent
with what we observed for point-to-point transfers.

GPU-Aware MPI exhibits low performance on all the ana-
lyzed systems, and we observe a higher performance gap be-

tween *CCL and GPU-Aware MPI on the allreduce compared
to the alltoall. Indeed, the allreduce involves data aggregation,
which *CCL performs on the GPUs. Although MPICH also
performs data aggregation on the GPUs, we believe that
*CCL coordinates GPU execution better. On Leonardo, we
note an even larger gap, since Open MPI runs the allreduce
on the host [34], similarly to what we do in the baseline
implementation. It is worth remarking that on Leonardo Open
MPI does not support UCC [35]. The implementation relying
on device-device copies performs a reduction on GPU 0,
followed by a broadcast. We do not implement any form of
pipelining, and we mostly use it for reference and to show that
implementing efficient multi-GPU collectives is non-trivial.

Last, we observe a higher gap between measured and ex-
pected performance on collectives compared to point-to-point
communications, showing there is still space for collective
algorithms optimization. Measured goodput on LUMI gets
closer to the expected one. Indeed, LUMI has a lower expected
goodput, which is thus easier to saturate.

Observation 4: For single node collectives, *CCL outper-
forms GPU-Aware MPI in most cases, except for small
collectives on LUMI. Indeed, unlike MPI, *CCL collectives
are optimized for the specific GPU models. Nevertheless,
there is still room for collective algorithms optimization.

1B 8B 64
B

51
2B 4K

iB
32

KiB
25

6K
iB

2M
iB

16
MiB

12
8M

iB
1G

iB
0

200

400

600

800

Go
od

pu
t (

Gb
/s

)

Expected Goodput

*CCL
GPU-Aware MPI

MPI (host mem. buffers)

1B 8B 64B 512B 4KiB 32KiB
0

20

40

Ru
nt

im
e

(u
s)

(a) Alps

1B 8B 64
B

51
2B 4K

iB
32

KiB
25

6K
iB

2M
iB

16
MiB

12
8M

iB
1G

iB
0

100

200

300

400

Go
od

pu
t (

Gb
/s

)

Expected Goodput

*CCL
GPU-Aware MPI

MPI (host mem. buffers)

1B 8B 64B 512B 4KiB 32KiB
0

20

40

Ru
nt

im
e

(u
s)

(b) Leonardo

1B 8B 64
B

51
2B 4K

iB
32

KiB
25

6K
iB

2M
iB

16
MiB

12
8M

iB
1G

iB
0

200

400

600

800

Go
od

pu
t (

Gb
/s

)

Expected Goodput

*CCL
GPU-Aware MPI

MPI (host mem. buffers)

1B 8B 64B 512B 4KiB 32KiB
0

20

40

Ru
nt

im
e

(u
s)

(c) LUMI

Fig. 7: Inter-node unidirectional goodput (per-node) and latency. For the sake of readability, we use different y-axis ranges.

V. INTER-NODE PERFORMANCE

We now analyze the interconnect performance when running
on multiple nodes. We first analyze point-to-point performance
(Sec. V-A), focusing on the impact of network distance on
performance (Sec. V-B). Then, we analyze the performance
of collective communications up to 4,096 GPUs for alltoall
(Sec. V-C) and allreduce (Sec. V-D). We apply the bench-
marking methodology described in Sec. III-A, and we run a
number of MPI processes on each node equal to the number
of available GPUs. For completeness, to assess the overhead
of managing GPUs (especially for small transfers), we also
analyze the performance when transferring buffers located in
the host memory. In this case, we run one MPI process per
NIC. On Alps and LUMI, we set the affinity of each process
so that it uses the closest GPU and NIC.

A. Unidirectional Latency and Goodput

We run a ping-pong test to measure the point-to-point
goodput between two nodes, with each process exchanging
data with the corresponding process on the other node. We
report the results of our analysis in Fig. 7. We report on the
x-axis the number of bytes transmitted on each NIC, and, on
the y-axis, the total goodput of the node (i.e., the sum of
the goodput on each NIC). MPI provides the highest goodput
and lowest latency on all the analyzed systems, regardless of
whether the buffer is in host or GPU memory. This is mostly
due to overheads introduced by *CCL when launching and
managing GPU kernels.

Observation 5: On inter-node point-to-point communi-
cations, MPI outperforms *CCL by up to one order of
magnitude on small transfers, and by up to 3x on larger
transfers.

B. Impact of Network Distance on Performance

We now analyze the impact of the GPU network location on
performance. Namely, on all systems, two GPUs on different
nodes can be connected to the same switch, to two switches on
the same Dragonfly/Dragonfly+ group, or to two switches in
two different groups. We measure latency and goodput with

a ping-pong test sending one byte and 1 GiB, respectively.
We use MPI since we showed in Fig. 7 that, for point-to-
point transfers, it provides the highest bandwidth and lowest
latency on all the analyzed systems. We report the results of
our analysis in Fig. 8a for buffers allocated on GPU memory.
For completeness and to separate the impact of the network
from that of the GPU management, we report in Fig. 8b the
same analysis, but for buffers allocated on host memory.

Each box’s top and bottom borders represent the third and
first quartiles, respectively. The middle line represents the
median, the × marker the mean, and the top and bottom
whiskers are the 5th and 95th percentile. Last, the notch
around the median represents the 95% confidence interval
of the median. For the sake of readability, we do not report
individual outliers but we annotate on the plot the minimum
and maximum observed values.

1) GPU memory buffers: We first focus on the performance
when transferring buffers allocated on GPU memory (Fig. 8a).
We observe that when the two GPUs are connected to the same
switch, all systems exhibit a similar latency, between 3.7us and
5.7us. However, the location of the GPUs impacts both latency
and goodput on all three systems. On Alps and LUMI, when
the two GPUs are on different Dragonfly groups, the average
latency increases by 28% compared to the case where the two
GPUs are under the same switch (from 4.33us to 5.56us on
Alps), whereas on Leonardo it increases by 2x (from 2.03us to
4.23us). We observe a similar effect on the goodput. All three
systems reach 95% of theoretical peak bandwidth when the
two GPUs are connected to the same switch. However, when
the two GPUs are on different Dragonfly/Dragonfly+ groups,
the average goodput decreases by 1% on Alps and LUMI, and
by 17% on Leonardo (from 395 Gb/s to 328 Gb/s).

This is mostly caused by a large performance variability
experienced on Leonardo when the two GPUs are not under
the same switch. This is due network noise [36], [37], [38],
i.e., interference by other jobs sharing the same inter-node
interconnection network. We analyze this in detail in Sec. VI.
We observe that the 95th latency percentile on Leonardo
increases to more than 8us when the two nodes are in different
groups, with a maximum latency of 132us. Similarly, we
observed a minimum 216 Gb/s goodput.

4

5

6
La

te
n
cy

 (
u
s)

Alps

2

4

6

8

Leonardo

3

4

LUMI

Same
Switch

Diff.
Switch

Diff.
Group

755

760

G
o
o
d
p
u
t

(G
b
/s

)

Same
Switch

Diff.
Switch

Diff.
Group

250

300

350

400

Same
Switch

Diff.
Switch

Diff.
Group

760

765

Min: 3.64
Max: 5.2

Min: 763
Max: 763.3

Min: 395
Max: 395

Min: 766
Max: 767.1

Min: 763.8
Max: 764.2

Min: 756.1
Max: 756.8

Min: 216.7
Max: 394.7

Min: 219.2
Max: 393.56

Min: 763.1
Max: 763.3

Min: 753.8
Max: 754.6

Min: 3.63
Max: 5.18

Min: 4.92
Max: 6.51

Min: 1.9
Max: 2.4

Min: 2.22
Max: 3.86

Min: 2.45
Max: 132

Min: 2.31
Max: 184.46

Min: 2.6
Max: 170

Min: 3.86
Max: 4.64

Median
Mean

p25

p75

328 Gb/s

4.33us

5.56us

3.71us

4.18usp95

p5

4.23us

395 Gb/s

(a) GPU memory buffers.

4

5

La
te

n
cy

 (
u
s)

Alps

1.0

1.5

2.0

Leonardo

3

4

LUMI

Same
Switch

Diff.
Switch

Diff.
Group

760

765

G
o
o
d
p
u
t

(G
b
/s

)

Same
Switch

Diff.
Switch

Diff.
Group

200

300

400

Same
Switch

Diff.
Switch

Diff.
Group

700

705

710

Min: 3.66
Max: 21.6

Min: 765.6
Max: 765.8

Min: 395
Max: 395

Min: 712
Max: 713.6

Min: 708.8
Max: 710

Min: 697.6
Max: 698.8

Min: 222
Max: 392.7

Min: 230.8
Max: 386.8

Min: 765.5
Max: 765.7

Min: 756.5
Max: 756.9

Min: 3.6
Max: 9.8

Min: 4.88
Max: 10.2

Min: 1.02
Max: 7.6

Min: 1.32
Max: 9.51

Min: 1.55
Max: 144

Min: 2.63
Max: 8.17

Min: 2.97
Max: 7.65

Min: 3.98
Max: 11.12

(b) Host memory buffers.

Fig. 8: Latency and goodput between GPUs at different distances. For the sake of readability, we use different y-axis ranges.

2) Host memory buffers: To provide a complete picture and
isolate network performance from overheads related to GPU
management, we report in Fig. 8b the same experiment, but
transferring buffers allocated on host memory. We observe that
latency on Leonardo is more than 3x smaller than on Alps and
LUMI (1.02us vs. 3.66us for nodes connected to the same
network switch). We attribute part of this difference to Sling-
shot relying on an Ethernet-based protocol, thus characterized
by a slightly higher overhead compared to InfiniBand [12]
(e.g., due to larger headers [12], [39]). Although using the
same network technology, Alps latency is slightly higher
than LUMI’s. However, Alps is not yet in production and
optimizations across the entire stack are still ongoing.

Observation 6: On Alps and LUMI, GPU’s network loca-
tion has a marginal impact on average performance (below
30% for latency and 1% for goodput). On the other hand,
on Leonardo, the average latency increases by up to 2x
when the GPUs are in different groups rather than under the
same switch. Similarly, the average goodput decreases by
17%. This is mainly due to network performance variability
caused by network noise.

C. Alltoall

We first analyze in Fig. 9 the goodput of a 2 MiB alltoall
when increasing the number of allocated GPUs. We consider
an asymptotically expected goodput, i.e., the expected goodput
for a sufficiently large number of GPUs. This can be computed
as the inter-node bandwidth available to each GPU (100
Gb/s on LUMI and Leonardo, and 200 Gb/s on Alps). This
underestimates the actual goodput for a small number of GPUs
since a larger fraction of communications happens on the intra-
node rather than the inter-node network. The actual expected
goodput can be easily computed by dividing the asymptotically
expected goodput by the ratio of communications occurring
on the inter-node network. However, we only report the
asymptotic one to improve the readability of the plot.

8 16 32 64 128 256 512 1024 2048 4096
#GPUs

0

50

100

150

Alps (NCCL)

Leonardo (NCCL)LUMI (RCCL)

LUMI (GPU-Aware MPI)Leonardo (GPU-Aware MPI)

Alps (GPU-Aware MPI)

200

G
o
o
d
p
u
t

(G
b
/s

)

Asymptotically Expected Goodput (Leonardo and LUMI)

Asymptotically Expected Goodput (Alps)

Fig. 9: 2 MiB alltoall scalability.

We did not run experiments up to 4,096 GPUs on all the
systems. Indeed, Leonardo measurements stop at 1,024 GPUs
since users can only run jobs using up to 256 nodes. On
Alps, GPU-Aware measurements stop at 2,048 GPUs since
we have access to only 512 nodes at the time being. NCCL
measurements stop at 256 GPUs since, for the alltoall, the
benchmark gets stuck when running it on 512 GPUs and
more (this occurs on both our benchmark and the official
nccl-tests [28]). This is not the case for the allreduce
collective (see Fig. 10), and we can thus reasonably assume
that the issue arises from the higher number of connections that
must be kept active in the alltoall compared to the allreduce.
It is worth remarking, however, that Alps is currently under
deployment and still affected by some instability [14]. Last,
on LUMI, measurements for GPU-Aware MPI stop at 4,096
GPUs, since users can allocate at most 512 nodes. RCCL
measurements stop instead at 512 GPUs because, similarly
to what we observed on Alps, the benchmark stalls when
running it on 1,024 GPUs and more (this happens on both
our benchmark and on the official rccl-tests [29]).

First, we observe that *CCL outperforms GPU-Aware MPI
on all the systems. This happens because *CCL exploits the
intra-node interconnect between GPUs more effectively, as dis-
cussed in Sec. IV. Indeed, the performance gap decreases when

the number of GPUs increases, since the goodput becomes
dominated by inter-node rather than intra-node performance.
On Alps and Leonardo, *CCL achieves around 75% efficiency
up to 1,024 GPUs, whereas on LUMI we observe a slightly
lower efficiency.

D. Allreduce

We perform a similar analysis in Fig. 10, for a 1 GiB
allreduce. For the allreduce, the memory occupancy is constant
in the node count, rather than linear as for the alltoall, and
we thus consider larger vectors. Consistent with what we
observed for the alltoall, *CCL outperforms GPU-Aware MPI.
As observed for the alltoall, this is due to *CCL being specif-
ically optimized for the target architectures. On Leonardo, we
observe an extremely low goodput for GPU-Aware MPI. As
discussed in Sec. IV-D, this is due to Open MPI copying the
buffer from the device to host memory and then running the
allreduce on the host. We also observe a sharp drop in *CCL
performance on Alps and LUMI from 256 to 512 GPUs. We
exclude this is caused by a change in the allreduce algorithm,
since the same drop happens when using the same algorithm
on 256 and 512 GPUs, and the goodput steadily decreases
between 256 and 512 GPUs, rather than dropping abruptly.

8 16 32 64 128 256 512 1024 2048 4096
#GPUs

0

100

200

300

400

G
o
o
d
p
u
t

(G
b
/s

)

Alps (NCCL)

Leonardo (NCCL)

LUMI (RCCL)

LUMI (GPU-Aware MPI)

Leonardo
(GPU-Aware MPI)

Alps (GPU-Aware MPI)

Fig. 10: 1 GiB allreduce scalability.

E. Comparison between MPI and *CCL

Last, it is worth remarking that the performance gap be-
tween *CCL and MPI also depends on the vector size. Indeed,
in Fig. 11, we report the ratio between RCCL and GPU-Aware
MPI for different node counts and vector sizes for alltoall
and allreduce on LUMI. We can see that, whereas RCCL
outperforms GPU-Aware MPI up to 4x on large vectors, for
small collectives GPU-Aware MPI is characterized by up to
10x lower runtime. There is a sharp inversion of the trend
around 32KiB, which we believe might be mitigated by tuning
the allreduce algorithm selection. On Alps and Leonardo,
instead, NCCL outperformed GPU-Aware MPI regardless of
the message size and node count.

16 32 64 128 256 512
#GPUs

1B
8B

64B
512B
4KiB

32KiB
256KiB

2MiB
16MiB

0.28 0.19 0.12 0.08 0.07 0.06
0.28 0.21 0.20 0.10 0.08 0.06
0.36 0.33 0.22 0.16 0.11 0.09
0.81 0.50 0.34 0.32 0.25 0.21
0.80 0.58 0.43 0.32 0.59 0.90
1.48 0.96 0.63 0.67 0.82 1.35
0.93 1.12 1.08 1.23 1.22 1.35
1.40 1.21 1.11 1.07 1.17 1.12
1.55 1.36 1.12 0.95 0.99 0.98

0.25

0.50

0.75

1.00

1.25

1.50

*C
CL

/G
PU

-a
wa

re
 M

PI
 G

oo
dp

ut

(a) Alltoall

16 32 64 128 256 512
#GPUs

1B
8B

64B
512B
4KiB

32KiB
256KiB

2MiB
16MiB

128MiB
1GiB

0.10 0.18 0.22 0.22 0.25 0.25
0.09 0.19 0.23 0.22 0.25 0.25
0.09 0.18 0.22 0.22 0.24 0.24
0.34 0.40 0.42 0.40 0.42 0.41
0.38 0.71 0.70 0.62 0.64 0.61
0.85 1.65 1.54 1.33 1.35 1.22
2.49 1.90 1.57 1.31 1.26 1.13
1.40 1.33 1.19 1.01 0.75 0.73
1.80 1.67 1.57 1.30 1.20 0.84
3.47 3.54 2.39 1.51 0.85 2.43
2.55 2.76 2.88 2.88 2.86 1.77

0.5

1.0

1.5

2.0

2.5

3.0

3.5

*C
CL

/G
PU

-a
wa

re
 M

PI
 G

oo
dp

ut

(b) Allreduce

Fig. 11: Ratio between RCCL and GPU-Aware MPI goodput
for different collective sizes and nodes count on LUMI.

Observation 7: *CCL exploits the intra-node GPU-GPU
interconnect more effectively than MPI, being specifically
optimized for the target devices. Those advantages are more
evident at smaller node counts and for larger transfers, for
which the performance of intra-node communications has
a higher weight on the overall performance. However, we
experienced instability at large node counts for the alltoall
on both NCCL and RCCL.

VI. NETWORK CONGESTION AND NOISE

Sec. V-B shows that Leonardo is affected by network noise,
which severely impacts performance when GPUs are not under
the same network switch. In this section, we detail such impact
and how it affects the scalability of collective operations. We
have not performed a similar analysis on Alps and LUMI
since, as shown in Sec. V-B, and also in previous works [12],
[5], Slingshot is largely unaffected by network noise.

A. Performance Isolation through Service Level Selection

The variability observed in Sec. V-B largely comes from
variable queueing delays experienced by packets when cross-
ing the network (i.e., network noise). Indeed, we observed
that variability only when the GPUs are not under the same
switch. We thus try to reduce network performance variability
by exploiting service levels.

In InfiniBand, service levels can be used to mark the class
of service of an application and are mapped to switch virtual
lanes. Each virtual lane is characterized by (logical) separate
buffering and flow control. This means that applications share
queues on network switches with other applications mapped
to the same service level. Assuming a round-robin arbitration
between the different virtual lanes, traffic forwarded on low-
utilized service levels experiences lower queueing delays.

Selecting a low-utilized service level can reduce the impact
of network noise. On Leonardo, all the traffic is mapped by
default on service level 0. To validate our hypothesis, we repeat
the same experiment we ran in Fig. 8, by selecting a service
level different from the default one2. When switching to a
service level different from the default one, we observed a
significant reduction in performance variability, with a mea-
sured difference lower than 1% between the minimum and

2This can be done by setting the NCCL_IB_SL and UCX_IB_SL environ-
ment variables for NCCL and MPI, respectively.

maximum goodput for nodes in different groups (we do not
explicitly show the results due to space constraints). It is worth
remarking that, on Leonardo, adaptive routing is enabled on
all service levels, and thus, the network noise reduction cannot
be attributed to using or not using adaptive routing.

Allreduce
Isolated

Allreduce
+Alltoall

Allreduce
+Incast

100

150

200

Go
od

pu
t (

Gb
/s

)

Default SL

Allreduce
Isolated

Allreduce
+Alltoall

Allreduce
+Incast

100

150

200
Non-default SL

Fig. 12: Impact of congestion on different service levels (SL)
on Leonardo.

Although switching to a different service level mitigated
the impact of network noise, it is important to note that this is
only possible because, on Leonardo, all the traffic is mapped
to the same service level by default. We would observe a
similar performance variability if other applications run on
the non-default service level. We demonstrate this by running
an allreduce on 128 GPUs and, concurrently and on the
same service level, another microbenchmark (running either
an alltoall or an incast) on other 128 GPUs (benchmarks are
allocated on nodes randomly). We repeat the same experiment
both on the default service level and on a non-default service
level. We show the result of our analysis in Fig. 12. We observe
that, when the allreduce is run together with the incast, the
goodput drops regardless of which service level we run the
application on. We also ran the same test, but by allocating
the nodes so to minimize the sharing of network switches
between the two applications. In that case, we observed no
performance impact of the incast on the allreduce (results are
not shown in the figure due to space constraints).

This demonstrates that network transfers on Leonardo are
severely affected by network noise. Using a different service
level only partially addresses the issue, and is strongly depen-
dent on the number of jobs running on that service level. It is
worth remarking that, to our knowledge, Leonardo is the only
system deploying a Dragonfly+ topology at such a scale, and
the routing algorithm might require further tuning to minimize
the impact of network noise on performance.

B. Noise Impact at Scale

Studies on the impact of network noise on workload scal-
ability have traditionally been carried out either through sim-
ulations [40], [37], or by injecting synthetic traffic [10], [12].
However, because on Leonardo all the traffic is mapped to the
same service level, by analyzing the performance difference
between the default and non-default service levels we have the
unique opportunity to estimate the impact of real production
network noise on multi-GPU workload scalability. Indeed,
when the application runs on the default service level, it
experiences the real production network noise, whereas when

it runs on the non-default service level, it performs similarly
to running on an empty system.

For this reason, we report in Fig. 13 the goodput of a 2 MiB
alltoall and a 1 GiB allreduce when running on the default
and non-default service levels. We observe no differences
when running on few GPUs, since only a few communications
will occur between GPUs not connected to the same switch.
When the number of GPUs increases, so does the number
of inter-switch communications and the impact of congestion
(i.e., the performance gap between the two service levels).
Although, regardless of congestion, the performance decreases
when increasing the number of GPUs (as described in Sec. V),
we observe that, on 1,024 GPUs, network noise causes an
additional 20% performance drop on alltoall, and a 50% drop
on the allreduce. We want to remark that running on a non-
default service level is only a temporary solution, possible
because, at the time being, all the traffic runs by default
on the same service level. Addressing this problem would
thus require improvements in the adaptive routing algorithm.
Moreover, on Leonardo Slurm is aware of which switch each
node is connected to and to which Dragonfly+ group belongs,
and can thus already optimize the job placement.

Observation 8: Network noise decreases the goodput of
allreduce and alltoall up to 50%.

8 16 32 64 128 256 512 1024
#GPUs

40

60

80

100

120

140

Go
od

pu
t (

Gb
/s

)

Default Service Level Non-Default Service Level

(a) Alltoall

8 16 32 64 128 256 512 1024
#GPUs

50

100

150

200

250

300

Go
od

pu
t (

Gb
/s

)

Default Service Level Non-Default Service Level

(b) Allreduce

Fig. 13: Impact of congestion on scalability on Leonardo.

VII. STATE OF THE ART

A. Intra-node Interconnect

Different works analyzed the intra-node GPU-GPU inter-
connect. Pearson [41] characterizes the interconnect bandwidth
heterogeneity within multi-GPU nodes using AMD MI250x
GPUs, whereas Siefert et al. [42] provide a detailed analysis
of the intra-node GPU-GPU performance across various sys-
tems. However, neither paper analyzes inter-node performance.
Moreover, while the former focuses on device-device copies
without using any higher-level communication library, the
latter only focuses on MPI. As we shown in Sec. IV, however,
there are several tradeoffs to consider to determine the best
communication library to use when moving data across GPUs
on the same node, depending on the technology, transfer size,
and communication pattern.

Similarly, Atchley et al. [5] characterize the Frontier su-
percomputer, covering network, storage, and intra-node per-

formance. The analysis performed on the GPU interconnect,
differently from this work, does not analyze the performance
that can be obtained through different software solutions (rang-
ing from device-device explicit copies to MPI). Moreover,
although the paper shows full-scale results on an alltoall
collective through MPI using GPCNet [10], it does not specify
whether the buffers are allocated on GPU memory (and
thus GPU-Aware MPI is used) or on host memory. Because
GPCNet allocates buffers on host memory [43], we assume the
tests did not use GPU-Aware MPI. Thus, on the GPU side, it
only focuses on intra-node point-to-point transfers.

B. Inter-node Interconnect
Other works extend the analysis to multiple nodes. Li et

al. [44] evaluate modern NVIDIA GPU interconnect tech-
nologies across different systems, including the Summit su-
percomputer [45]. Khorassani et al. [17] compare different
MPI implementations with RCCL for on multiple nodes of the
Spock system, an early access cluster deployed with Slingshot
and AMD MI100 GPUs. Both studies consider point-to-point
and collective communications, but the analysis is limited to
a few nodes (8 and 16, respectively). As we showed in Sec. V
and Sec. VI, however, effects related to scalability and network
noise are only visible at larger scales.

Several works analyze network noise and interference be-
tween jobs at scale [5], [37], [12], [38], [40], [36], [11], [46],
often providing solutions to mitigate it. Most of these works,
however, either simulate or synthetically generate noise. Dif-
ferently from these works, in this paper we show the impact
of noise induced by real production workloads.

C. Other
Several benchmarks have been proposed to assess the per-

formance of intra- and inter-node interconnection networks,
including OSU [27], NCCL and RCCL test [28], [29], Tar-
tan [47], and others [48]. The focus of this paper is, however,
on the analysis of performance and scalability of multi-
GPU supercomputers, rather than on the benchmarking itself.
Last, some works analyze multi-GPU performance on several
workloads including deep learning [49], [50], [51], linear
algebra [52], computational physics [53], biology [54], data
management [55], and others. Although this helps understand
application scalability, it does not allow for evaluating the
impact of the interconnect on the overall performance, nor
to characterize and identify potential network bottlenecks.

VIII. DISCUSSION

This study focuses on three specific supercomputers, but
the benchmarks developed are general and applicable to other
multi-GPU systems. Many conclusions, particularly those re-
lated to software, are broadly relevant. Tuning is expected
to similarly impact other multi-GPU systems, and the perfor-
mance differences between MPI and *CCL often stem from
optimizations unique to one framework, suggesting similar be-
haviors elsewhere. We identify opportunities to improve GPU-
aware MPI collective operations, especially allreduce, due to
suboptimal host-GPU interactions during data aggregation.

Although none of the systems analyzed in this paper is based
on fat tree networks, we expect most of our conclusions to hold
regardless of the topology. The main exceptions are: i) very
large fat tree systems may exhibit a slightly higher latency due
to the greater diameter compared to Dragonfly/Dragonfly+;
ii) the routing algorithm might differ on other topologies or
technologies, and network noise levels may vary.

IX. CONCLUSIONS

Understanding the performance of multi-GPU supercomput-
ers is fundamental for identifying optimization opportunities.
In this work, we focus on GPU-to-GPU communications,
by thoroughly characterizing three supercomputers covering
a significant fraction of the currently available HPC intra-
and inter-node interconnect technology: Alps, Leonardo, and
LUMI. Our analysis pinpoints several improvement opportu-
nities, ranging from routing to communication libraries.

First, the default software configuration of all three systems
did not fully exploit their potential, requiring a non-negligible
tuning effort to achieve good performance, both on a single
node and at larger scales. Second, each communication library
comes with its own set of optimizations and is thus more or
less suitable according to the scenario. In general, we found
*CCL to provide higher performance on collective operations,
whereas GPU-Aware MPI performs better on point-to-point
transfers. However, this depends on the system and the specific
optimization implemented by MPI (e.g., on LUMI MPI out-
performs RCCL on small collectives). Lastly, we showed that
some existing HPC networks are still susceptible to network
noise, which decreases performance at scale by up to 50%.

We believe that our analysis can help users of large super-
computers to exploit those systems more efficiently. Further-
more, it provides valuable insights for systems and software
designers as they address the challenges outlined herein.

ACKNOWLEDGMENT

We thank Samuel Antao (AMD) for his feedback and
support, and Kim McMahon (HPE Cray) for the enlightening
discussion on MPICH performance on LUMI. We also thank
CSCS for granting us early access to the Alps supercom-
puter. We acknowledge the CINECA award under the ISCRA
initiative, for the availability of high performance comput-
ing resources and support. We acknowledge the EuroHPC
Joint Undertaking for awarding this project access to the
EuroHPC supercomputer LUMI, hosted by CSC (Finland)
and the LUMI consortium through a EuroHPC Development
Access call. This work has been partially funded by Sapienza
University under the SEED-2022 and ”Progetti Grandi 2023”
funding schemes. Daniele De Sensi and Flavio Vella are
members of Gruppo Nazionale Calcolo Scientifico - Istituto
Nazionale di Alta Matematica (GNCS-INdAM). Zebin Ren is
funded by The Dutch Research Council (NWO) grant num-
bers OCENW.KLEIN.561. The authors acknowledge financial
support from ICSC – Centro Nazionale di Ricerca in High-
Performance Computing, Big Data and Quantum Computing,
funded by European Union – NextGenerationEU.

REFERENCES

[1] S. Heldens, P. Hijma, B. V. Werkhoven, J. Maassen, A. S. Z. Belloum,
and R. V. Van Nieuwpoort, “The landscape of exascale research: A
data-driven literature analysis,” ACM Comput. Surv., vol. 53, no. 2, mar
2020. [Online]. Available: https://doi.org/10.1145/3372390

[2] J. Dongarra, “TOP500 list,” [Accessed 29-03-2024]. [Online]. Available:
https://www.top500.org/lists/top500/

[3] NVIDIA, “NVLink & NVSwitch for Advanced Multi-GPU
Communication — nvidia.com,” [Accessed 19-03-2024]. [Online].
Available: https://www.nvidia.com/en-us/data-center/nvlink/

[4] M. Sato, Y. Kodama, M. Tsuji, and T. Odajima, “Co-design and system
for the supercomputer “fugaku”,” IEEE Micro, vol. 42, no. 2, pp. 26–34,
2022.

[5] S. Atchley, C. Zimmer, J. Lange, D. Bernholdt, V. Melesse Vergara,
T. Beck, M. Brim, R. Budiardja, S. Chandrasekaran, M. Eisenbach,
T. Evans, M. Ezell, N. Frontiere, A. Georgiadou, J. Glenski, P. Grete,
S. Hamilton, J. Holmen, A. Huebl, D. Jacobson, W. Joubert,
K. Mcmahon, E. Merzari, S. Moore, A. Myers, S. Nichols, S. Oral,
T. Papatheodore, D. Perez, D. M. Rogers, E. Schneider, J.-L. Vay,
and P. K. Yeung, “Frontier: Exploring exascale,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’23. New York, NY,
USA: Association for Computing Machinery, 2023. [Online]. Available:
https://doi.org/10.1145/3581784.3607089

[6] Meta, “Building Meta’s GenAI Infrastructure,” [Accessed 19-
03-2024]. [Online]. Available: https://engineering.fb.com/2024/03/12/
data-center-engineering/building-metas-genai-infrastructure/

[7] K. Vadambacheri Manian, C.-H. Chu, A. Ahmad Awan, K. Shafie Kho-
rassani, H. Subramoni, and D. K. Panda, “Omb-um: Design, implemen-
tation, and evaluation of cuda unified memory aware mpi benchmarks,”
in 2019 IEEE/ACM Performance Modeling, Benchmarking and Simula-
tion of High Performance Computer Systems (PMBS), 2019, pp. 82–92.

[8] NVIDIA, “NVIDIA Collective Communications Library (NCCL),”
[Accessed 19-03-2024]. [Online]. Available: https://developer.nvidia.
com/nccl

[9] AMD, “ROCm Collective Communication Library (RCCL),” [Accessed
19-03-2024]. [Online]. Available: https://rocm.docs.amd.com/projects/
rccl

[10] S. Chunduri, T. Groves, P. Mendygral, B. Austin, J. Balma,
K. Kandalla, K. Kumaran, G. Lockwood, S. Parker, S. Warren,
N. Wichmann, and N. Wright, “Gpcnet: designing a benchmark
suite for inducing and measuring contention in hpc networks,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3295500.3356215

[11] S. A. Smith, C. E. Cromey, D. K. Lowenthal, J. Domke, N. Jain, J. J.
Thiagarajan, and A. Bhatele, “Mitigating inter-job interference using
adaptive flow-aware routing,” in SC18: International Conference for
High Performance Computing, Networking, Storage and Analysis, 2018,
pp. 346–360.

[12] D. De Sensi, S. Di Girolamo, K. H. McMahon, D. Roweth, and
T. Hoefler, “An in-depth analysis of the slingshot interconnect,” in SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2020, pp. 1–14.

[13] CSCS, “Alps Supercomputer,” [Accessed 19-03-2024]. [Online].
Available: https://www.cscs.ch/computers/alps

[14] ——, “Santis Eary Access Partition,” [Accessed 19-03-2024]. [Online].
Available: https://confluence.cscs.ch/display/KB/Santis+Early+Access

[15] NVIDIA, NVIDIA Grace Hopper Superchip Architecture Whitepaper,
2024. [Online]. Available: https://resources.nvidia.com/en-us-grace-cpu/
nvidia-grace-hopper

[16] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven,
highly-scalable dragonfly topology,” in Proceedings of the 35th Annual
International Symposium on Computer Architecture, ser. ISCA ’08.
USA: IEEE Computer Society, 2008, p. 77–88. [Online]. Available:
https://doi.org/10.1109/ISCA.2008.19

[17] K. S. Khorassani, C.-C. Chen, B. Ramesh, A. Shafi, H. Subramoni, and
D. K. Panda, “High performance mpi over the slingshot interconnect,”
Journal of Computer Science and Technology, vol. 38, no. 1, pp. 128–
145, 2023.

[18] M. Turisini, G. Amati, and M. Cestari, “LEONARDO: A Pan-European
Pre-Exascale Supercomputer for HPC and AI applications,” Journal of
Large Scale Reasearch Facilities, vol. 8, no. A186, 2024.

[19] NVIDIA, NVIDIA A100 Tensor Core GPU Architecture,
2020. [Online]. Available: https://images.nvidia.com/aem-dam/en-zz/
Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf

[20] A. Shpiner, Z. Haramaty, S. Eliad, V. Zdornov, B. Gafni, and E. Zahavi,
“Dragonfly+: Low cost topology for scaling datacenters,” in 2017
IEEE 3rd International Workshop on High-Performance Interconnection
Networks in the Exascale and Big-Data Era (HiPINEB), 2017, pp. 1–8.

[21] EuroHPC Joint Undertaking, “LUMI supercomputer,” [Accessed
19-03-2024]. [Online]. Available: https://lumi-supercomputer.eu/

[22] AMD, “AMD CDNA 2 Architecture,” [Accessed 19-03-2024]. [On-
line]. Available: https://www.amd.com/content/dam/amd/en/documents/
instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf

[23] T. Hoefler and R. Belli, “Scientific benchmarking of parallel computing
systems: twelve ways to tell the masses when reporting performance
results,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC
’15. New York, NY, USA: Association for Computing Machinery,
2015. [Online]. Available: https://doi.org/10.1145/2807591.2807644

[24] NVIDIA, “NVIDIA Collective Communications Library (NCCL) –
Github,” [Accessed 19-03-2024]. [Online]. Available: https://github.
com/NVIDIA/nccl

[25] AMD, “ROCm Collective Communication Library (RCCL) – Github,”
[Accessed 19-03-2024]. [Online]. Available: https://github.com/ROCm/
rccl

[26] H. Wang, S. Potluri, D. Bureddy, C. Rosales, and D. K. Panda,
“Gpu-aware mpi on rdma-enabled clusters: Design, implementation and
evaluation,” IEEE Transactions on Parallel and Distributed Systems,
vol. 25, no. 10, pp. 2595–2605, 2014.

[27] D. Bureddy, H. Wang, A. Venkatesh, S. Potluri, and D. K. Panda,
“Omb-gpu: A micro-benchmark suite for evaluating mpi libraries on
gpu clusters,” in Recent Advances in the Message Passing Interface,
J. L. Träff, S. Benkner, and J. J. Dongarra, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 110–120.

[28] NVIDIA, “NCCL-test,” [Accessed 30-03-2024]. [Online]. Available:
https://github.com/NVIDIA/nccl-tests

[29] AMD, “RCCL-test,” [Accessed 30-03-2024]. [Online]. Available:
https://github.com/ROCm/rccl-tests

[30] R. Shi, S. Potluri, K. Hamidouche, J. Perkins, M. Li, D. Rossetti, and
D. K. D. K. Panda, “Designing efficient small message transfer mecha-
nism for inter-node mpi communication on infiniband gpu clusters,” in
2014 21st International Conference on High Performance Computing
(HiPC), 2014, pp. 1–10.

[31] M. Heydemann, J. Meyer, and D. Sotteau, “On forwarding indices
of networks,” Discrete Applied Mathematics, vol. 23, no. 2, pp.
103–123, 1989. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0166218X8990022X

[32] NVIDIA, “NVIDIA collective communication library (nccl)
documentation,” v2.20 [Accessed 02-04-2024]. [Online]. Available:
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/

[33] R. Rabenseifner, “Optimization of collective reduction operations,” in
Computational Science - ICCS 2004, M. Bubak, G. D. van Albada,
P. M. A. Sloot, and J. Dongarra, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 1–9.

[34] Open MPI, “GPU-Aware Allreduce Implementation (v4.1.4),” [Accessed
19-03-2024]. [Online]. Available: https://github.com/open-mpi/ompi/
blob/v4.1.4/ompi/mca/coll/cuda/coll cuda allreduce.c

[35] Unified Communication X, “Unified Collective Communication (UCC),”
[Accessed 19-03-2024]. [Online]. Available: https://github.com/openucx/
ucc

[36] D. De Sensi, S. Di Girolamo, and T. Hoefler, “Mitigating network
noise on dragonfly networks through application-aware routing,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19. New
York, NY, USA: ACM, 2019, pp. 16:1–16:32. [Online]. Available:
http://doi.acm.org/10.1145/3295500.3356196

[37] T. Hoefler, T. Schneider, and A. Lumsdaine, “The impact of network
noise at large-scale communication performance,” 05 2009, pp. 1–8.

[38] M. S. Beni and B. Cosenza, “An analysis of performance variability on
dragonfly+ topology,” in 2022 IEEE International Conference on Cluster
Computing (CLUSTER), 2022, pp. 500–501.

https://doi.org/10.1145/3372390
https://www.top500.org/lists/top500/
https://www.nvidia.com/en-us/data-center/nvlink/
https://doi.org/10.1145/3581784.3607089
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://engineering.fb.com/2024/03/12/data-center-engineering/building-metas-genai-infrastructure/
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://rocm.docs.amd.com/projects/rccl
https://rocm.docs.amd.com/projects/rccl
https://doi.org/10.1145/3295500.3356215
https://www.cscs.ch/computers/alps
https://confluence.cscs.ch/display/KB/Santis+Early+Access
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper
https://doi.org/10.1109/ISCA.2008.19
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://lumi-supercomputer.eu/
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://doi.org/10.1145/2807591.2807644
https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl
https://github.com/ROCm/rccl
https://github.com/ROCm/rccl
https://github.com/NVIDIA/nccl-tests
https://github.com/ROCm/rccl-tests
https://www.sciencedirect.com/science/article/pii/0166218X8990022X
https://www.sciencedirect.com/science/article/pii/0166218X8990022X
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/
https://github.com/open-mpi/ompi/blob/v4.1.4/ompi/mca/coll/cuda/coll_cuda_allreduce.c
https://github.com/open-mpi/ompi/blob/v4.1.4/ompi/mca/coll/cuda/coll_cuda_allreduce.c
https://github.com/openucx/ucc
https://github.com/openucx/ucc
http://doi.acm.org/10.1145/3295500.3356196

[39] T. Hoefler, D. Roweth, K. Underwood, R. Alverson, M. Griswold,
V. Tabatabaee, M. Kalkunte, S. Anubolu, S. Shen, M. McLaren, A. Kab-
bani, and S. Scott, “Data center ethernet and remote direct memory
access: Issues at hyperscale,” Computer, vol. 56, no. 7, pp. 67–77, 2023.

[40] D. De Sensi, T. De Matteis, K. Taranov, S. Di Girolamo,
T. Rahn, and T. Hoefler, “Noise in the clouds: Influence of network
performance variability on application scalability,” Proc. ACM Meas.
Anal. Comput. Syst., vol. 6, no. 3, dec 2022. [Online]. Available:
https://doi.org/10.1145/3570609

[41] C. Pearson, “Interconnect bandwidth heterogeneity on amd mi250x and
infinity fabric,” arXiv preprint arXiv:2302.14827, 2023.

[42] C. M. Siefert, C. Pearson, S. L. Olivier, A. Prokopenko, J. Hu, and T. J.
Fuller, “Latency and bandwidth microbenchmarks of us department of
energy systems in the june 2023 top 500 list,” in Proceedings of the SC
’23 Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis, ser. SC-W ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 1298–1305.
[Online]. Available: https://doi.org/10.1145/3624062.3624203

[43] Taylor Groves, Sudheer Chunduri, Pete Mendygral, “Global
Performance and Congestion Network Test - GPCNeT,” [Accessed
19-03-2024]. [Online]. Available: https://github.com/netbench/GPCNET

[44] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J. Barker,
“Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli, nvswitch and
gpudirect,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 1, pp. 94–110, 2020.

[45] J. Wells, B. Bland, J. Nichols, J. Hack, F. Foertter, G. Hagen, T. Maier,
M. Ashfaq, B. Messer, and S. Parete-Koon, “Announcing supercomputer
summit,” Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United
States), Tech. Rep., 2016.

[46] S. D. Pollard, N. Jain, S. Herbein, and A. Bhatele, “Evaluation of an
interference-free node allocation policy on fat-tree clusters,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2018, pp. 333–345.

[47] A. Li, S. L. Song, J. Chen, X. Liu, N. Tallent, and K. Barker, “Tartan:
Evaluating modern gpu interconnect via a multi-gpu benchmark suite,”
in 2018 IEEE International Symposium on Workload Characterization
(IISWC), 2018, pp. 191–202.

[48] Y. Li, H. Qi, G. Lu, F. Jin, Y. Guo, and X. Lu, “Understanding
hot interconnects with an extensive benchmark survey,” BenchCouncil
Transactions on Benchmarks, Standards and Evaluations, vol. 2, no. 3,
p. 100074, 2022. [Online]. Available: https://doi.org/10.1016/j.tbench.
2022.100074

[49] N. Tallent, N. Gawande, C. Siegel, A. Vishnu, and A. Hoisie, Evaluating
On-Node GPU Interconnects for Deep Learning Workloads, 01 2018,
pp. 3–21.

[50] S. Shi, Q. Wang, and X. Chu, “Performance modeling and evaluation
of distributed deep learning frameworks on gpus,” 2018.

[51] S. Shams, R. Platania, K. Lee, and S.-J. Park, “Evaluation of deep
learning frameworks over different hpc architectures,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
2017, pp. 1389–1396.

[52] M. Bernaschi, A. Celestini, F. Vella, and P. D’Ambra, “A multi-gpu
aggregation-based amg preconditioner for iterative linear solvers,” IEEE
Transactions on Parallel and Distributed Systems, vol. 34, no. 8, pp.
2365–2376, 2023.

[53] P. Gualtieri, F. Battista, F. Salvadore, and C. Casciola, “Effect of stokes
number and particle-to-fluid density ratio on turbulence modification in
channel flows,” Journal of Fluid Mechanics, vol. 974, p. A26, 2023.

[54] K. M. Ocetkiewicz, C. Czaplewski, H. Krawczyk, A. G. Lipska,
A. Liwo, J. Proficz, A. K. Sieradzan, and P. Czarnul, “Multi-gpu unres
for scalable coarse-grained simulations of very large protein systems,”
Computer Physics Communications, vol. 298, p. 109112, 2024.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0010465524000353

[55] C. Lutz, S. Breß, S. Zeuch, T. Rabl, and V. Markl, “Pump up the
volume: Processing large data on gpus with fast interconnects,” in
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1633–1649. [Online].
Available: https://doi.org/10.1145/3318464.3389705

https://doi.org/10.1145/3570609
https://doi.org/10.1145/3624062.3624203
https://github.com/netbench/GPCNET
https://doi.org/10.1016/j.tbench.2022.100074
https://doi.org/10.1016/j.tbench.2022.100074
https://www.sciencedirect.com/science/article/pii/S0010465524000353
https://www.sciencedirect.com/science/article/pii/S0010465524000353
https://doi.org/10.1145/3318464.3389705

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

X. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 Analysis of the intra-node interconnect in multi-GPU
systems.

C2 Analysis of the inter-node interconnect in multi-GPU
systems.

C3 Analysis of network noise impact on scalability in multi-
GPU systems.

B. Computational Artifacts

A1 https://zenodo.org/doi/10.5281/zenodo.13312325

Artifact ID Contributions Related
Supported Paper Elements

A1 C1, C2, C3 Fig. 3-13

XI. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

The artifact contains the benchmark code, the scripts used
to run the benchmarks and collect the data, as well as the
script to postprocess the data and generate the figures in the
paper. The artifact also contains the data collected on the three
analyzed systems.

Expected Results

The results should be coherent with those presented in the
paper when executed on systems with similar hardware and
software environments. Some differences might be present
due to differences in environments. For experiments involving
multiple nodes, some small differences might be caused by
job allocation and/or network configuration.

Expected Reproduction Time (in Minutes)

On each system, we expect:
• Setup time: 5-10 minutes to download and compile the

artifact.
• Execution: 10 hours. This is the expected walltime. The

actual compute hours depend on the number of GPUs
allocated (e.g., more than 1000 compute hours might
be needed for the tests involving 4096 GPUs). Most of
the test can be scheduled with sbatch, but some of
them require manual intervention to select a proper node
allocation.

• Analysis: 30 minutes. We provide scripts to produce the
same plots shown in the paper.

Artifact Setup (incl. Inputs)

Hardware: Ideally, access to Alps, Leonardo, and LUMI
is required. Alternatively, access to systems with a similar
technology (e.g., Frontier).

Software: Both the benchmarks code and the plotting scripts
depend on the following Python packages: seaborn, scipy,
numpy, pandas. The benchmarks code also needs MPI and
RCCL/NCCL, which should already be available on most
systems. Different MPI and/or RCCL/NCCL versions might
produce slightly different results, although we expect they will
not alter the overall conclusions made in the paper.

Datasets / Inputs: No datasets/inputs required.
Installation and Deployment: The artifact does not rely on

any specific compiler. However, the artifact heavily relies on
Slurm as a workload manager.

Artifact Execution

The workflow consists of two main tasks: experiments
execution, and plotting of the data. A sbatch script is
provided to run the experiments needed for each of the figures
in the paper. All the plots are produced by a single Python
script.

Artifact Analysis (incl. Outputs)

The output of the benchmarks is automatically transformed
from a human-readable format to a CSV file. All the CSV
files are stored in the data/ folder, together with a CSV file
describing the setup of each experiment.

Artifact Evaluation (AE)

A. Computational Artifact A1

Artifact Setup (incl. Inputs)

The framework has been configured so that each test will
automatically load all the libraries and modules required.
Additionally, the ./conf folder contains one configuration
file for each system, where the user can specify which ad-
ditional modules to run and the paths of different libraries
and executables required by the framework. Those paths have
already been correctly set for the three systems analyzed in
this work.

To plot the data, the following software is required: Python
(at least 3.6.8), numpy, pandas, seaborn.

Artifact Execution

To compile the code, as a first step, the user should
modify the ./conf.sh file, and update the variable
BLINK_SYSTEM to the name of the target system (i.e., alps,
leonardo, or lumi). Then, by running ./compile.sh all
the needed code will be compiled. The script will compile the
microbenchmarks targeting the transmission of GPU memory
buffers (contained in the ./src/microbench-gpu folder),
as well as those targeting the transmission of host memory
buffers (contained in the ./src/microbench folder). The
./sbatch folder contains all the Slurm scripts required
to run the experiments we ran in the paper (divided into
subfolders, one for each target system).

In the following, we describe the purpose of each script and
the data they collect.

• ./sbatch/SYSTEM/intra-node.sbatch It col-
lects intra-node performance data. This data is then used
to plot Fig. 3, 5, and 6.

• ./sbatch/lumi/intra-node-gpu-pairs.sbatch
It collects the performance data for ping-pong between
each pair of GPUs on a node. This data is then used to
plot Fig. 4.

• ./sbatch/SYSTEM/two-nodes.sbatch It col-
lects the performance data for ping-pong between two
GPUs on two different nodes. This data is then used to
plot Fig. 7 and 8. For Fig. 8, the ALLOCATION variable
must be set to either same_switch, diff_switch
or diff_group depending on whether the two nodes
are under the same switch, under two different switches
on the same group, or under two switches in two differ-
ent groups. Unfortunately, checking the nodes location
requires some manual effort from the user.
– On Leonardo, this can be checked by

analyzing the topology.conf file under
/var/spool/slurmd/conf-cache/. The file
contains, for each switch, the list of the nodes/NICs
attached to that switch, as well as the list of switches
within each dragonfly group (lines 12-33).

– On LUMI and Alps, on each node the
/etc/cray/xname file contains the coordinates of

that node. For example, on LUMI, it can be parsed as
follows:
∗ x#### = network group / cabinet
∗ c# = chassis (8 chassis / cabinet)
∗ s# = blade (8 blades / chassis)
∗ b# = board (2 boards / blade)
∗ n# = node (1 node / board)

• ./sbatch/SYSTEM/many-nodes-coll.sbatch
It collects the performance for alltoall and allreduce on
several nodes. This data is then used to plot Fig. 9, 10,
and 13. This should be run several times, each with a
different number of nodes/GPUs.

• ./sbatch/leonardo/many-nodes-cong-sl.sbatch
It collects the data needed for Fig. 12.

The framework saves the data under the ./data folder.
The ./data/description.csv folder contains the meta-
data of each run. Please be aware that some of these exper-
iments (e.g., those running on multiple nodes) might require
thousands of compute hours.

Artifact Analysis (incl. Outputs)

All the paper plots can be generated by running the
./plots/plot.sh script. We suggest doing that on a local
machine. All the plots (with names matching their position
in the paper) can be found under ./plots/paper. The
plots do not contain the annotations since those have manually
added.

	Introduction
	Systems Description
	Alps
	Leonardo
	LUMI

	Intra-Node Point-to-Point Performance
	Benchmarking Methodology
	Performance Tuning
	Point-to-point Latency and Goodput
	Impact of GPU Location on LUMI

	Intra-Node Collectives Performance
	Alltoall Expected Goodput
	Alltoall Measured Goodput
	Allreduce Expected Goodput
	Allreduce Measured Goodput

	Inter-Node Performance
	Unidirectional Latency and Goodput
	Impact of Network Distance on Performance
	GPU memory buffers
	Host memory buffers

	Alltoall
	Allreduce
	Comparison between MPI and *CCL

	Network Congestion and Noise
	Performance Isolation through Service Level Selection
	Noise Impact at Scale

	State of the Art
	Intra-node Interconnect
	Inter-node Interconnect
	Other

	Discussion
	Conclusions
	References
	Overview of Contributions and Artifacts
	Paper's Main Contributions
	Computational Artifacts

	Artifact Identification
	Computational Artifact A1
	Computational Artifact A1

