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How to address locality challenges on standard architectures and programming?
D. Unat et al.: “Trends in Data Locality Abstractions for HPC Systems”

IEEE Transactions on Parallel and Distributed Systems (TPDS). Vol 28, Nr. 10, IEEE, Oct. 2017

Three Ls of modern computing:
Spatial Locality
Temporal Locality

Control Locality
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Turing Award 1977 (Backus): "Surely there must be a less primitive
way of making big changes in the store than pushing vast numbers
of words back and forth through the von Neumann bottleneck."

Control Locality? Load-store vs. Dataflc

Load-store (“von Neumann”) (' \ Static Dataflow (“non von Neumann”)
Energy per instruction: 70p)J Energy per operation: 1-3pJ

Instruction Energy Breakdown

25p) 6pJ Control 70 pJ
I-Cache Access Register File Add
Access Source: Mark Horowitz, 1SSC'14
'.’rm s Jv ~ \ s 7 r J!—
Control Locality
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Single Instruction Multiple Data/Threads (SIMD - Vector CPU, SIMT - GPU)

(High Performance) Computing really
became a data management challenge

[1]: Marc Horowitz, Computing’s Energy Problem (and what we can do about it), ISSC 2014, plenary
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Crystal Ball into the Post-Moore Future (maybe already today?)

Future architectures will force us to manage
accelerated heterogeneity

Rest of this talk: how do we understand which
parts of programs to accelerate on which device?

Obvious answer: the slow ones!
So simply observe their performance? Not so fast.
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What can we learn from High Performance Computing
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HPC is used to solve complex problems!

Treat Performance-cen

tric programmi
and system design [ike Atdthan

physical systems
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Scientific Performance Engmeermg

1) Observe \\

3) Understand

/
)
.

N
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Part I: Observe

Experimental design
Measure systems P 8

Collect data

Examine documentation

Gather statistics

S8
9\ ; Document process

\ Factorial design
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Trivial Example: Simple ping-pong latency benchmark

1200

How did you get
this number?

The latency of
Piz Daint is
1.77us!

| averaged 10°
experiments, it
must be right!

Why do you think
so? Can | see the
data?

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

~1.77US sample

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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Dealing with variation

The 99.9% confidence
interval is 1.765us to
1.775us

Did you assume
normality?

Can we test for
normality?

Ugs, the data is not normal at all.
The nonparametric 99.9% Cl is
much wider: 1.6us to 1.9us!

A A A A A A
NORMAL DISTRIBUTION

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15
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This Cl makes
me nervous.
Let’s zoom!
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Image credit: nersc.gov
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Clearly, the
mean/median are

not sufficient!

Piz Dora
Min: 1.57 Median Arithmetic Mean
Max: 7.2 . =
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Scientific benchmarking of parallel computing systems

ACM/IEEE Supercomputing 2015 (SC15) + talk online on youtube!

Scientific Benchmarking of Parallel Computing Systems

Twelve ways to tell the masses when reporting performance results

Torsten Hoefler Roberto Belli
Dept. of Computer Science Dept. of Computer Science
ETH Zurich ETH Zurich

Zurich, Switzerland
htor@inf.ethz.ch

ABSTRACT

Measuring and reporting performance of parallel computers con-
stitutes the basis for scientific advancement of high-performance
computing (HPC). Most scientific reports show performance im-
provements of new techniques and are thus obliged to ensure repro-
ducibility or at least interpretability. Our investigation of a strati-
fied sample of 120 papers across three top conferences in the field
shows that the state of the practice is lacking. For example, it is of-
ten unclear if reported improvements are deterministic or observed
by chance. In addition to distilling best practices from existing
work, we propose statistically sound analysis and reporting tech-
niques and simple guidelines for experimental design in parallel
comontin e and codity them m g nortable benchmarkine by We

Zurich, Switzerland
bellir@inf.ethz.ch

Reproducing experiments is one of the main principles of the sci-
entific method. It is well known that the performance of a computer
program depends on the application, the input, the compiler, the
runtime environment, the machine, and the measurement method-
ology [2(0,43]. If a single one of these aspects of experimental de-
sign is not appropriately motivated and described, presented results
can hardly be reproduced and may even be misleading or incorrect.

The complexity and unigueness of many supercomputers makes
reproducibility a hard task. For example, it is practically impossi-
ble to recreate most hero-runs that utilize the world’s largest ma-
chines because these machines are often unique and their software
configurations changes regularly. We introduce the notion of in-
terpretability, which is weaker than reproducibility. We call an ex-
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Simplifying Measuring and Reporting: LibSciBench

Fnclude <Lobieb.h> = Simple MPI-like C/C+ interface

#inctude <stdlib.h> = High-resolution timers

pleline b oz = Flexible data collection

int main(int argc, char *argv[1){ = Controlled by environment variables
it 1, 3, rank] buffer[N]; = Tested up to 512k ranks
MPI_Init(&argc, &argv); = Parallel timer synchronization

LSB Init("test_bcast", 0); ) ) ) ) )
= R scripts for data analysis and visualization
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* Output the info (i.e., rank, runs) in the results file #*/

LSB_Set Rparam_int("rank", rank); l Box Plot | Violin Plot | Combined Plot
LSB Set Rparam _int("runs", RUNS); 250
for (sz=1; sz<=N; sz*=2){
for (j=0; j<RUNS; j++){ Higher 1.5 QR
/* Reset the counters */
LSB_Res();
- 2.25
/* Perform the operation */ .
MPI_Bcast(buffer, sz, MPI_INT, ©, MPI_COMM_WORLD); @
=4 Density
/* Register the j-th measurement of size sz */ o ath
. Coop . Ist : 4th
LSB_Rec(sz); 4% quartile Quartile Quartile
1 = A
}
a Mean Mean o
LSB_Finalize(); £ X
MPI_Finalize(); 1.75 P‘g | 1st g
return @; a Median || Quartile 52
o o
= =
Lower 1.5 IQR Median

S. Di Girolamo, TH: http://spcl.inf.ethz.ch/Research/Performance/LibLSB/



http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

a7 o) = & | o v escien  ETHziirich

We have the (statistically sound) data, now what?

0.7 t(n=2100)?
"~ |dgemm + L —
0.6 i
-4
05 + |
= +
_ t(n=1510)? ;
L 04 | | + .
@ +
'g \ =+
|— 0.3 B ' ++ —
+
0.2 | +++ |
+
4+t
17 o | - Matrix Multipl
++.|.+ atrix Multiply
0 [ | 'J_—-!-+++++++ ] 1 | ] I t(n) = a*n3
0 300 600 900 1200 1500 1800 2100
Size (N)

The 99% confidence interval is within 1% of the reported median.

TH, W. Gropp, M. Snir, W. Kramer: Performance Modeling for Systematic Performance Tuning, IEEE/ACM SC11
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TH, W. Gropp, M. Snir, W. Kramer: Performance Modeling for Systematic Performance Tuning, IEEE/ACM SC11
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ol o = B
Part Il: Model r "\\\
E
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Burnham, Anderson: “A model is a simplification or approximation of
reality and hence will not reflect all of reality. ... Box noted that “all
models are wrong, but some are useful.” While a model can never

be “truth,” a model might be ranked from very useful, to useful, to
somewhat useful to, finally, essentially useless.”

_ This is generally true for all kinds of modeling.
We focus on performance modeling in the following!

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
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TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC



Requirements modeling I: Six-step performance modeling

Input
parameters

Communication
parameters

Describe application
kernels

25000

Communication
pattern

Fit sequential 20000

baseline 15000

Communication / 10000

computation overlap

5000
10-20% speedup [2]
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[1] TH, W. Gropp, M. Snir and W. Kramer: Performance Modeling for Systematic Performance Tuning, SC11
[2] TH and S. Gottlieb: Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient using MPI Datatypes, EuroMPI'10

Grid Points per Process (L)

- r 100
Serial Model ------
Model P=1024 —— *
|| Comm Owverhead 80
Pack Overhead ——
- B0
40
20
0
500 1000 1500 2000

Communication Overhead (3]

ETH:zurich

19
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Requirements modeling Il: Automated best-fit modeling

= Manual kernel selection and hypothesis generation is time consuming (boring and tricky)

= |dea: Automatically select best (scalability) model from predefined search space
number of terms

N\ n«— "7 _ _
ee,mmberot f(p)=3 ¢ -p*-logy(p) |73
k=1 \ (model) constant Jx T‘J
5,J1Q
n=1
1={0,12}
J={0,1}

[1]: A. Calotoiu, TH, M. Poke, F. Wolf: Using Automated Performance Modeling to Find Scalability Bugs in Complex Codes, IEEE/ACM SC13
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Requirements modeling Il: Automated best-fit modeling

= Manual kernel selection and hypothesis generation is time consuming (and boring)
= |dea: Automatically select best model from predefined space

C TN )
_ 2 I Jk }.1,\
J(p)= ac,'p ><Iog2 (») i 11
k=1 ¢,-log(p)+c,-p Je W
,-log( p) +c, - p-log( p) ,J1Q

-log( p)+c, - p°

(B

n=2 arels log(p) +¢, - p*-log( p)

1={0,1,2 - - P+C, - p-log( p)
={012; ¢, + ¢, log(p) L P+C, - p°

J={0,1}

~ ¢ +c,*prlog(p)

¢ te, sz xlog(p)

(B

.p+c,-p*-log( p) \
- p-log( p) +c, - p°

- p-log( p)+c,- p*-log( p)
-p®+c,-p*-log( p)

lex Codes, IEEE/ACM SC13

(=Y

>§/Ho|pooooooo

[1]: A. Calotoiu, T. Hoefler, M. Poke, F. Wolf: Using Automated Performance Modeling to ™ad Scalability Bugs in Co
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Requirements modeling lll: Source-code analysis [1]

= Extra-P selects model based on best fit to the data
= What if the data is not sufficient or too noisy?

= Back to first principles
= The source code describes all possible executions
= Describing all possibilities is too expensive, focus on counting loop iterations symbolically

for (J =1; jJ <=n; j = j*2) parallel Loop extraction
for (k = j; k <= n; k = k++) arailel program ‘
OperationInBOdy (j ’ k) ; o :-:a:]. ;npliariigzi? buff dp type, reduce exch proc(i) = |
T il i senal b T, apype, resnen ekeh protd), ==aT
4 T i e e e et s
>=1 J<=n enddo
k J . do i = id *n/p, ( id +1)* n/p
! L ks w3l mbian
[} ] /7
| 1 ,’
n—4--e----- - ---k<=n
d4 . N=(n+1)log,n—n+2
7 |
A Requirements Models . .
24 ¢ A ! q Number of iterations
[}

1 __4’_/ _______ L-——-k>=1 W - N‘p:]_ - ni(zo,1) n2(zo,2) nr—1(z0,r—1)
z ! > N = Z Z Z nr(mo,r)

I B B E— _
1.2 n D=1

[1]: TH, G. Kwasniewski: Automatic Complexity Analysis of Explicitly Parallel Programs, ACM SPAA’14

‘ i1=0 ig=0 ip_1=0
p—>0
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TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC
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TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC



ASPCL

Core 1

IRegistersI

\

Core 2

|Registers|

/

.
.

Lind 1 Aine 1
Line \ Bus /Line 2
Line 3\ / Line 3
write : read
0x0000
0x0001

spcl.inf.ethz.ch oo o
v oo IETHZUrich

T, RFOY
- TREFO Y

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13

Yoot COpTORRSSt

To, RFO
Ty, read
(T, read)
Ry

T,, RFO

Ty, read
N
T’ RF0 ! LT, RFO‘

] &= Invalid read R,= 278 ns
£( |JP Local read: R,= 8.6 ns

2 Remote read Ry =235 ns

R..

(Tl evict)
Re.

T, read
T,, read

U (T, read)
Ry
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Performance Model
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Part Ill: Understand

=  Use models to
1. Proof optimality of real implementations

e Stop optimizing, step back to algorithm level

2. Design optimal algorithms or systems in the model

* Can lead to non-intuitive designs

= Proof optimality of matrix multiplication
= |ntuition: flop rate is the bottleneck
= t(n) =76ps * n3
= Flop rate R = 2flop * n3/(76ps * n3) = 27.78 Gflop/s
* Flop peak: 3.864 GHz * 8 flops = 30.912 Gflop/s
Achieved ~90% of peak (IBM Power 7 IH @3.864GHz)

©

Time [s]

1 | 1 | 1

= Gets more complex quickly
= |magine sparse matrix-vector

0 300 600 900 1200 1500 1800 2100
Size (N)
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Design algorithms — bcast in cache-to-cache model

Multi-ary tree example

Tree depth
depth d =2

d
Tobeast Trw+D_ (e ki+0)+ > Tulki +1)
i—1 =1
d 7
Ooe N<14+Y [k, Vi<ijki <k

i=1j=1

Reached threads

S. Ramos, TH: “Modeling Communication in Cache-Coherent SMP Systems - A Case-Study with Xeon Phi “, ACM HPDC’13
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Measured results — small broadcast and reduction

P=10

P=58
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Performance

I 4 PracTicaL MobEL of
"l PararrLEL CoMPUTATION

Capability Model
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@ N 000)
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TH: Bridging Performance Analysis Tools and Analytic Performance Modeling for HPC
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How to continue from here? DAPP Parallel Language
DAPP Transformation System _ = Data-centric, explicit requirements models
= User-supported, compile- and run-time § @, g
memlets operators %—

' L] .l. .l. .l.
= ."'. - I —
- ."'l."' l."‘ l.."
T DCIR
"' "',"' > ;;;':.':'.:1 European Research Council
AP P ‘~ '-.. oo Established by the European Commission
098
-- ® |
0' % Supporting top researchers

from anywhere in the world

Performance-transparent Platforms

O A<-o

RMA ompiNA[2) NISA [3] portals

“©

[1]: M. Besta, TH: Accelerating Irregular Computations with Hardware Transactional Memory and Active Messages, ACM HPDC'15
[2]: R. Belli, TH: Notified Access: Extending Remote Memory Access Programming Models for Producer-Consumer Synchronization, IPDPS’15
[3]: S. Di Girolamo, P. Jolivet, K. D. Underwood, TH: Exploiting Offload Enabled Network Interfaces, IEEE Micro’16



