
IEEE TRANSACTIONS ON COMPUTERS, VOL. (VOL), NO. (NO), (MONTH) (YEAR) 1

Snitch: A tiny Pseudo Dual-Issue Processor for
Area and Energy Efficient Execution of

Floating-Point Intensive Workloads
Florian Zaruba, Fabian Schuiki, Torsten Hoefler, and Luca Benini

Abstract—Data-parallel applications, such as data analytics, machine learning, and scientific computing, are placing an ever-growing
demand on floating-point operations per second on emerging systems. With increasing integration density, the quest for energy
efficiency becomes the number one design concern. While dedicated accelerators provide high energy efficiency, they are
over-specialized and hard to adjust to algorithmic changes. We propose an architectural concept that tackles the issues of achieving
extreme energy efficiency while still maintaining high flexibility as a general-purpose compute engine. The key idea is to pair a tiny
10 kGE (kilo gate equivalent) control core, called Snitch, with a double-precision floating-point unit (FPU) to adjust the compute to
control ratio. While traditionally minimizing non-FPU area and achieving high floating-point utilization has been a trade-off, with Snitch,
we achieve them both, by enhancing the ISA with two minimally intrusive extensions: stream semantic registers (SSR) and a
floating-point repetition instruction (FREP). SSRs allow the core to implicitly encode load/store instructions as register reads/writes,
eliding many explicit memory instructions. The FREP extension decouples the floating-point and integer pipeline by sequencing
instructions from a micro-loop buffer. These ISA extensions significantly reduce the pressure on the core and free it up for other tasks,
making Snitch and FPU effectively dual-issue at a minimal incremental cost of 3.2%. The two low overhead ISA extensions make
Snitch more flexible than a contemporary vector processor lane, achieving a 2× energy-efficiency improvement. We have evaluated
the proposed core and ISA extensions on an octa-core cluster in 22 nm technology. We achieve more than 6× multi-core speed-up and
a 3.5× gain in energy efficiency on several parallel microkernels.

Index Terms—RISC-V, many-core, energy efficiency, general purpose

F

1 INTRODUCTION

THE ever-increasing demand for floating-point perfor-
mance in scientific computing, machine learning, big

data analytics, and human-computer interaction are domi-
nating the requirements for next-generation computer sys-
tems [1]. The paramount design goal to satisfy the demand
of computing resources is energy efficiency: Shrinking fea-
ture sizes allow us to pack billions of transistors in dies
as large as 600 mm2. The high transistor density makes it
impossible to switch all of them at the same time at high
speed as the consumed power in the form of heat cannot
dissipate into the environment fast enough. Ultimately, de-
signers have to be more careful than ever only to spend
energy on logic, which contributes to solving the problem.

Thus, we see an explosion on the number of acceler-
ators solely dedicated to solving one particular problem
efficiently. Unfortunately, there is only a limited optimiza-
tion space that, with the end of technology scaling, will
reach a limit of a near-optimal hardware architecture for
a certain problem [2]. Furthermore, algorithms can evolve
rapidly, thereby making domain-specific architectures less
efficient for such algorithms [3]. On the other end of the

• F. Zaruba, F. Schuiki and L. Benini are with the Integrated Systems Lab-
oratory (IIS), Swiss Federal Institute of Technology, Zurich, Switzerland
E-mail: {zarubaf,fschuiki,benini}@iis.ee.ethz.ch

• T. Hoefler is with the Scalable Parallel Computing Laboratory (SPCL),
Swiss Federal Institute of Technology, Zurich, Switzerland
E-mail: htor@inf.ethz.ch

• L. Benini also is with Department of Electrical, Electronic and Information
Engineering (DEI), University of Bologna, Bologna, Italy.

spectrum, we can find fully programmable systems such as
graphics processing units (GPUs) and even more general-
purpose units like central processing units (CPUs). The
programmability and flexibility of those systems incur sig-
nificant overhead and make such systems less energy effi-
cient. Furthermore, CPUs and GPUs (to a lesser degree) are
affected by the Von Neumann bottleneck: The rate of which
information can travel from data and instruction memory
limits the computational throughput of the architecture.
More hardware is necessary to mitigate these effects, such
as caching, multi-threading, and super-scalar out-of-order
processor pipelines [4]. All these mitigation techniques aim
to increase the utilization of the compute resource, in this
case, the FPU. They achieve this goal at a price of much-
increased hardware complexity, which in turn decreases ef-
ficiency because a smaller part of the silicon budget remains
dedicated to compute units. A reproducible example, thanks
due to its open-source nature, is the out-of-order BOOM
CPU [5], [6]: Approximately 2.7 % of the core’s overall
area, is spent on the FPU.1 More advanced CPUs such as
AMD’s Zen2 architecture show a better compute per area
efficiency (around 25 %), primarily thanks to the wide single
instruction multiple data (SIMD) floating-point execution
units [7].

0018-9340 ©2020 IEEE

ar
X

iv
:2

00
2.

10
14

3v
2

 [
cs

.A
R

]
 8

 O
ct

 2
02

0

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. (VOL), NO. (NO), (MONTH) (YEAR)

72 pJ

75 pJ

49 pJ

Instr
.

Cache
FPU

Reg File
s

Data

Cache
Rest

fld

fmadd.d

addi/bne

37 2 5 1315

10 28 6 1615

10 28 6 1615

for (int i = 0; i < n; i++) {
 sum += A[i] * B[i];
}

fld ft0, 0(a1)
fld ft1, 0(a2)
addi a5, a5, 8
addi a4, a4, 8
fmadd.d fa0, ft0, ft1, fa0
bne a3, a5, -5

(a)

(b) (c)

C Code: dotproduct(n, A, B) Trace:

Figure 1. (a) Energy per instruction [pJ] for instructions used in a simple
dot product kernel. (b) corresponding C code and (c) (simplified) RISC-V
assembly. Two load instructions, one floating-point accumulate instruc-
tion, and one branch instruction make up the inner-most loop kernel. We
provide energy per op of an application-class RISC-V processor called
Ariane [8]. In total one loop operation consumes 317 pJ for which only
28 pJ are spent on the actual computation.

1.1 Design Goal: Area and Energy efficiency

To give the reader quantitative intuition on the severe ef-
ficiency limits affecting programmable architectures, let us
consider, the simple kernel of a dot product (z = ~a · ~b) in
Figure 1(b,c). The corresponding energies per instruction
type in Figure 1(a) for a 64-bit application-class RISC-V
processor as reported in [8] in a 22 nm technology. The
kernel consists of up of five instructions. Four of those
instructions perform bookkeeping tasks such as moving the
data into the local register file (RF) on which arithmetic
instructions can operate and looping over all n elements of
the input vectors. In total, the energy used for performing an
element multiplication and addition in this setting is 317 pJ.
The only “useful” workload in this kernel is performed by
the FPU, which accounts for 28 pJ. The rest of the energy
(289 pJ) is spent on auxiliary tasks. Even this short kernel
gives us an immediate intuition on where energy efficiency
is lost. FPU utilization is low (17 %), mostly due to load and
store and loop management instructions.

1.2 Existing Mitigation Techniques and Architectures

Techniques and architectures exist that try to mitigate the
efficiency issue highlighted above.

• Instruction set architecture (ISA) extensions: Post
increment load and store instruction can accelerate
pointer bumping within a loop [9]. For an efficient im-
plementation they require a second write-port into the
RF, therefore increasing the implementation cost. SIMD
such as Streaming SIMD extensions (SSE)/advanced
vector extensions (AVX) [10] in x86 or NEON Media
Processing Engine (NEON) [11] in Advanced RISC Ma-
chines (Arm) perform a single-instruction on a fixed
amount of data items in a parallel fashion. Therefore
reducing the total loop count and amortizing the loop
overhead per computation. Wide SIMD data-paths are
quite inflexible when elements need to be accessed

1. estimated on a post-synthesis netlist in GLOBALFOUND-
RIES 22 nm FDX

individually: Dedicated shuffle operations are used to
bring the data into a SIMD-amenable form.

• Vector architectures: Cray-style [12] vector units such
as the scaleable vector extensions (SVE) [13] and the
RISC-V vector extension [14] operate on larger chunks
of data in the form of vectors.

• GPUs: Single instruction multiple thread (SIMT) archi-
tectures such as NVIDIA’s V100 [15] GPU use multiple
parallel scalar threads that execute the same instruc-
tions. Hardware scheduling of threads hides memory
latency. Coalescing units bundle the memory traffic to
make accesses into (main) memory more efficient. How-
ever, the hardware to manage threads is quite complex
and comes at a cost that offsets the energy efficiency of
GPUs. The thread scheduler needs to swap different
thread contexts on the same streaming multiproces-
sor (SM) whenever it detects a stalling thread (group)
waiting for memory loads to return or due to different
outcomes of branches (branch divergence). This means
that the SM must keep a very large number of thread
contexts (including the relatively large RF) in local static
random-access memories (SRAMs) [16]. SRAM accesses
incur a higher energy cost than reads to flipflop-based
memories and enforce a word-wise access granularity.
For GPUs to overcome these limitations, they offer
operand caches in which software can cache operands
and results, which are then reusable at a later point in
time, which decreases area and energy efficiency. For
example, NVIDIA’s Volta architecture offers two 64-bit
read ports on its register file per thread. To sustain a
three operand fused multiply-add (FMA) instruction, it
needs to source one operand from one of its operand
caches [16].

1.3 Contributions

The solutions we propose here to solve the problems out-
lined above are the following:

1) A general-purpose, single-stage, single-issue core,
called Snitch, tuned for high energy efficiency. Aiming
to maximize the compute/control ratio (making the
FPU the dominant part of the design) mitigating the
effects of deep pipelines and dynamic scheduling.

2) An ISA extension, originally proposed by Schuiki
et al. [17], called stream semantic register (SSR). This
extension accelerates data-oblivious [18] problems by
providing an efficient semantic to read and write from
memory. Load and store instructions which follow
affine access patterns (streams) are implicitly mapped
to register read/writes. SSRs effectively elide all explicit
memory operations. Semantically they are comparable
to vector operations as they operate on vectors (tensors)
without the explicit need for load and store instruc-
tions. We have enhanced the SSR implementation by
providing shadow registers to overlap configuration
and computation. The shadow registers are transparent
from a programming perspective, new configurations
are accepted as long as the shadow registers are not
full. As soon as the current configuration has finished,
the shadow register’s value is swapped in as a new

ZARUBA et al.: AREA AND ENERGY EFFICIENT ARCHITECTURE FOR FLOATING-POINT WORKLOADS 3

active configuration. The streamers immediately start
fetching using the new stream configuration.

3) A second ISA extension, floating-point repetition in-
struction (FREP), which controls an FPU sequence
Buffer. The FPU and the integer core in the proposed
system are fully decoupled and only synchronize with
explicit move instructions between the two subsystems.
The FPU sequencer is situated on the offloading path
of the integer core to the FPU. It provides a small,
configurable size sequence buffer from which it can
sequence floating-point instructions in a configurable
manner. The sequence buffer frees the integer core
from issuing instructions to the FPU that is, therefore,
available for other control tasks. This makes this single-
issue, in-order core pseudo dual-issue, enabling it to over-
lap independent integer and floating-point instructions.
Furthermore, the sequence buffer eliminates the need
for loops in the code and reduces the pressure on
the instruction fetch. Repetition instructions are also
implemented in the X86 [19] and TMS320C28x digital
signal processor (DSP) [20] ISAs. Compared to those
instructions that allow only a single instruction to be
repeated, our approach, in conjunction with SSRs, offers
greater flexibility as a few instruction can program
the entire loop-buffer, and complex operations can be
entirely offloaded.

While traditionally minimizing non-FPU area and achieving
floating-point high utilization has been a trade-off, we can
eliminate the need to compromise: Our extensions have
negligible area cost and boost FPU utilization significantly.
Our Snitch core achieves the same clock frequency, higher
flexibility, and is 2.0× more area- and energy-efficient than
a conventional vector processor lane.

From the design and implementation viewpoint, the
contributions of this work are:

1) A fully programmable, shared memory, multi-core sys-
tem tuned for utmost energy efficiency by using a
tiny integer core attached to a double-precision FPU.
Achieving 3.5× more energy efficiency and 4.5× better
FPU utilization on small matrices than the current state
of the art.

2) An implementation of the SSR [17] enhanced with
shadow registers to allow overlapping loop-setup with
ongoing operations using the FREP extension enabling
the usage of our SSR and FREP extensions on more
irregular kernels such as Fast Fourier Transform (FFT).
Achieving speed-ups of 4.7× in the single-core case and
close to 3× in the parallel octa-core case for the FFT
benchmark.

3) A decoupled FPU and integer core architecture featur-
ing a sequence buffer that can independently service
the FPU while the integer core is busy with control
tasks. This extension, together with the SSR, make the
small integer core pseudo dual-issue at a minimal incre-
mental area cost of less than 7 % for the core complex
and 3.2 % on the cluster level including memories.

The rest of the paper is organized as follows: Section 2
describes the proposed architecture and ISA extensions,
Section 3 offers more details on the programming model
of the system and the ISA extensions, Section 4 presents

the experimental setup, evaluation and comparison to other
systems. The last sections conclude the presented work and
present future research directions.

2 ARCHITECTURE

Figure 2 depicts the microarchitecture of the proposed sys-
tem. The smallest unit of repetition is a Snitch core complex
(CC). It contains the integer core and the FPU subsystem.
The core is repeated N times to form a Snitch Hive. Cores
of a Hive share an integer multiply/divide unit and an L1
instruction cache. M Hives make up a Snitch Cluster that
shares a TCDM acting as a software-managed L1 cache.
K clusters share last level memory via a crossbar. All the
parameters can be freely adjusted. For example, a Hive
can just contain one core, therefore effectively making it a
private multiplier and instruction cache. Similarly, a cluster
can just contain one Hive with one core, making the TCDM
a private scratchpad memory.

2.1 Snitch Core Complex

The smallest unit of repetition is a Snitch CC, see Figure 2
(4). It contains an RV32IMAFD (RV32G) RISC-V core and
can be configured with or without support for the proposed
ISA extensions. Depending on the technology and desired
speed targets of the design, the offloading request, response,
and the load/store interface to the TCDM can be fully
decoupled, increasing the design’s clock frequency at the
expense of increased latency of one cycle.

2.1.1 Integer Core
The foundation of the system is an ultra-small (9 kGE to
20 kGE), and energy-efficient 32 bit integer RISC-V compute
unit, which we call Snitch (Figure 2 (1)). Snitch implements
the entire (mandatory) integer base (RV32I). As its register
file (RF) dominates the design of the CPU implementation,
we alternatively also support the embedded profile (E) as
the other implementation choice. The embedded profile
only provides 15 integer registers instead of 31. In addition,
the RF can either be implemented based on D-latches or
D-flipflops. Each Snitch has a dedicated instruction fetch
port, a data port with an independent valid-then-ready [21]
decoupled request and response path, and a generic accel-
erator offloading interface. The accelerator interface has full
support for offloading an entire 32 bit RISC-V instruction,
and we re-use the same RISC-V instruction encoding. This
saves energy in the core’s decoding logic as only a few
bits need to be decoded to decide whether to offload an
instruction or not. The interface has two independent decou-
pled channels. One for offloading an operation, up to three
operands, and a back-channel for writing-back the result of
the offloaded operation. In the presented design, we use
the accelerator port to offload integer multiply/divide and
floating-point instructions.

As our system’s workload focuses on floating-point com-
putation Snitch was implemented with a minimal area foot-
print. The core is a single-stage, single-issue, in-order de-
sign. Integer instructions with all of their operands available
(no data dependencies present) can be fetched, decoded,
executed, and written back in the same cycle. We chose

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. (VOL), NO. (NO), (MONTH) (YEAR)

TCDM (1.1 MGE)Snitch Cluster 0 (3.3 MGE)

Snitch Core Complex (188 kGE)

Hive 0

Shared Instruction Cache (319 kGE) Sh
ar

ed
 M

ul
/D

iv

CC 0 CC 1 CC N-1

Hive
M-1

Cluster Peripherals Cluster Crossbar (AXI)

System Crossbar (AXI)

TCDM Interconnect (155 kGE)

Cluster 1

FPU Subsystem (142 kGE)

Regfile

Cache Refill (AXI)

frep config

In
te

ge
r

LS
U

FP LSU

SSR 1

SSR Cfg

SSR 0

M
em

or
y

Po
rt

1

Ctrl

FPU

Ctrl

Regfile

M
em

or
y

Po
rt

0

In
st

ru
ct

io
n

Fe
tc

h

Acclerator Bus/RISC-V Instructions

FPU Sequencer

D
ec

od
er

So
C

 A
cc

es
s

Acclerator Bus

Acclerator Bus

D
ec

od
er

1

2

3

4

5

6

L0
Instruction

Cache

Wake-Up

Cluster K-1

7

Snitch (7-21 kGE)

Figure 2. (4) Overview of an entire Snitch system. The smallest unit of repetition is a Snitch CC. (1) It contains the integer core and the (2) FPU
subsystem. (3) The FPU sequencer, which is situated between the core and the FP-SS, can be micro-coded to issue floating-point instructions to
the FPU automatically. (5) The core is repeated N times to form a Snitch Hive. Cores of a Hive share an integer multiply/divide unit and an L1
instruction cache. (6) M Hives make up a Snitch Cluster that shares a TCDM, a software-managed L1 cache. K clusters are sharing last level
memory via a crossbar. (7) Each TCDM bank has a dedicated atomic unit that performs read-modify-write operations on its bank.

this design point to maximize energy efficiency and keep
the design area at a minimum. The core keeps track of
all 31 registers (the zero register is not writable, hence it
does not need dedicated tracking) using a single bit in a
scoreboard. There are three classes of instructions that need
special handling:

2.1.1.1 Integer instructions: Most of the instructions
contained in the RISC-V I subset, such as integer arithmetic
instructions, manipulation of control and status registers
(CSRs), and control flow changes, can be executed in a
single-cycle as soon as all operands are available. Integer
multiply/divide instructions are part of the M subset and
are offloaded to the (possibly) shared multiply/divide unit.
There is no source of stalling as the arithmetic logic unit
(ALU) is fully combinational and executes its instruction in
a single cycle. To foster the re-use of the ALU, it also per-
forms comparison for branches, calculates CSR masks, and
performs address calculations for load/store instructions.

2.1.1.2 Load/Store instructions: Load/store in-
structions execute as soon as all operands are available, and
the memory subsystem can process a new request. The data
port of the core can exert back-pressure onto the load/store
subsystem. Furthermore, the load store unit (LSU) needs
to keep track of issued load instructions and perform re-
alignment and possible sign-extension. The core can have a

configurable number of outstanding load instructions to the
non-blocking memory hierarchy. Store instructions are con-
sidered fire-and-forget from a core perspective. The memory
subsystem needs to maintain issue order as the core expects
the arrival of load values in-order.

In addition to regular load and stores, the LSU can also
issue atomic memory operations and load-reserved/store-
conditional (LR/SC) as defined by the RISC-V atomic mem-
ory operation specification. From a core perspective, the
only difference is that the core also sends an atomic oper-
ation to the memory subsystem alongside the address and
data. We provide additional signaling to accomplish that.

2.1.1.3 Accelerator/special function unit instruc-
tions: Off-loaded instruction can execute as soon as all
operands are available, and the accelerator interface can
accept a new offloading request. We distinguish three types
of instructions:

1) Both destination and source operands are in the integer
RF, such as integer multiplication and division. Snitch’s
scoreboard keeps track of the destination operand.

2) Source operands are in the integer RF, and the receiving
unit maintains the destination register. Such an example
would be a move from integer to floating-point RF.

3) Both operands are outside of the integer RF, such as
any floating-point compute instruction (e.g., FMA).

ZARUBA et al.: AREA AND ENERGY EFFICIENT ARCHITECTURE FOR FLOATING-POINT WORKLOADS 5

We offload floating-point instructions to the core-private
floating point subsystem (FP-SS) (Section 2.1.2). As most of
the floating-point instructions operate on a separate float-
ing-point RF we can easily decouple the floating-point logic
from the integer logic. The RISC-V ISA specifies explicit
move instructions from and to the floating-point RF, which
makes this ISA particularly amenable for such an implemen-
tation. Decoupling the FP-SS from the integer core makes
it possible to alter and sequence floating-point instructions
into the FP-SS. This is discussed in detail in Section 2.5.

The second compelling use-case of the accelerator inter-
face is to share expensive but, in our case, uncommonly used
resources [22]. We provide a hardware implementation of
the multiplication and division instructions for RISC-V (M).
This includes a fully pipelined 32 bit multiplier, and a 32 bit
bit-serial integer divider with preliminary operand shifting
for an early-out division — all cores of a Hive share such a
hardware multiply/divide unit. Integer multiplications are
two-cycle instructions while divisions are bit-serial and take
up to 32 cycles in the worst case. By controlling the number
of cores per Hive, the designer can adjust the sharing ratio.
Sharing is independent of the functionality, and possibly
many other resources can be shared, for example, a bit-
manipulation ALU.

As the RF only contains a single write-port, the three
sources mentioned above contend over the single write port
in a priority arbitrated fashion. Single-cycle instructions
have priority over results from the LSU over write-backs
from the accelerator interface. That makes it possible to
interleave results if an integer instruction does not need
to write back, such as branch instructions, for example.
Requests to the memory subsystem are only issued if there is
space available to store the load result. Hence, cores cannot
block each other with outstanding requests to the memory
hierarchy. The integer core has priority on the register file to
reduce the amount of logic necessary to retire a single-cycle
instruction.

The Snitch integer core is formally verified against the
ISA specification using the open-source RISC-V formal
framework [23].

2.1.2 FPU Subsystem

The FP-SS, see Figure 2 (2,3), bundles an IEEE-754 compliant
FPU with a 32×64 bit RF. The FP-SS has its own dedicated
scoreboard where it keeps track of all registers in a similar
fashion to the integer core. The FPU is parameterizable in
supported precision and operation latency [24]. All float-
ing-point operations are fully pipelined (with possibly dif-
ferent pipeline depths). Operations without dependencies
can be issued back to back. In addition to the FPU it also
contains a separate LSU dedicated to loading and storing
floating-point data from/to the floating-point RF, the ad-
dress calculation is performed in the integer core, which sig-
nificantly reduces the area of the LSU. Furthermore, the FP-
SS contains two SSRs which map, upon activation through
a CSR write, registers ft0 and ft1 to memory streams.
The architecture of the streamers is depicted in Figure 3 and
described in more detail in Section 2.4.

2.2 Snitch Hive
A Hive contains a configurable number of core complexes
that share an instruction cache and a hardware multiply
divide unit, see Figure 2 (5).

Each core has a small, private, fully set-associative L0
instruction cache from which it can fetch instructions in
a single cycle. A miss on the L0 cache generates a refill
request upon the shared L1 instruction cache. If the cache-
line is present, it is served from the data array of the L1
cache. If it also misses on the L1 cache, a refill request is
generated and send to backing memory. Multiple requests to
the same cache-line coalesce to a single refill request, which
serves all pending requests. The L1 cache refills using an
Advanced eXtensible Interface (AXI) burst-based protocol
from the cluster crossbar.

The Snitch Hive serves another vital purpose: It provides
a suitable boundary for separating physical design concerns.
All signals crossing the design boundary are fully decou-
pled, and pipeline registers can be inserted to ease timing
concerns on the boundaries of the design. The possibility
to make a Hive the unit of repetition (a macro that is
synthesized and placed and routed separately) allows for
assembling larger clusters containing many more cores.

2.3 Snitch Cluster
One or more Hives make up a cluster, see Figure 2 (6). Hives
connect into the TCDM crossbar that attaches to a banked
shared memory, and the instruction refill port connects to
the AXI cluster crossbar where it shares peripherals and
communication to other clusters. The cluster crossbar pro-
vides both slave and master ports, which makes it possible
to access the data of other clusters.

2.3.1 Tightly Coupled Data Memory (TCDM)
Core data requests are passed through an address decoder.
Requests to a specific (configurable) memory range are
routed towards the TCDM, and all other requests are for-
warded to the cluster crossbar. In its current implementa-
tion, the TCDM crossbar is a fully connected, purely com-
binational interconnect. Other interconnect strategies can
easily be implemented and will offer different scalability
and conflict trade-offs. In order to reduce the effects of
banking conflicts, we employ a banking factor of two, i.e.,
for each initiator port (two per core), we use two memory
banks.

We resolve atomic memory operations and LR/SC is-
sued by the core in a dedicated unit in front of each memory.
The unit consists of a simple finite-state machine (FSM) that
performs the read-out of the operands from the underlying
SRAM. In the next cycle, it uses its local ALU to perform
the required operations and finally saves the results in its
memory. During the duration of an atomic operation, the
unit blocks any access to the SRAM.

2.3.2 Cluster Peripherals
The cluster peripherals are used by software to get infor-
mation about the underlying hardware. Read-only regis-
ters provide information on TCDM start and end address,
number of cores per cluster, and performance monitoring
counters (PMCs) such as effective FPU utilization, cycle

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. (VOL), NO. (NO), (MONTH) (YEAR)

SSR Lane 0

Write
FIFO Control

Read
FIFO Control Loop 1

Loop 2

Loop N

+

SSR Lane 1

Con�g

FP
U

Re
g�

le

SSR
Switch

rs
1

rs
2

rs
3 rd

Address Generation

St
rid

e
Se

le
ct

Ad
dr

es
s

Credits

Figure 3. The SSR hardware wraps around the floating-point RF. All
three input and one output operands are mapped to two SSR lanes.
Each lane can be either configured as read or write and affine address
calculation can be done with up to N loop counters (N is an imple-
mentation defined parameter). Requests are sent towards the memory
hierarchy as soon as a valid configuration is in place. A credit-based
queue hides the memory latency.

count, TCDM bank conflicts. Writable registers are a couple
of scratch registers and a wake-up register, which triggers
an inter-processor interrupt (IPI).

2.4 Stream Semantic Register (SSR)
The SSR extension was first proposed by Schuiki et al. [17],
[25]. This hardware extension allows the programmer to
configure up to two memory streams with an affine address
pattern of dimension N . The dimension N depends on the
number of available loops (see Figure 3) and can be param-
eterized. Streamers are configurable using memory-mapped
input/output (IO). Each streamer is only configurable by the
integer core controlling the FP-SS. No other core can write
the core-private configuration registers.

The SSR module wraps logically around the float-
ing-point RF. When activated by using a write to a CSR,
operations on the RF are intercepted iff the operands corre-
spond to either ft0 or ft1 (which map to SSR lane 0 or lane
1 respectively). The reads or writes are redirected towards
an internal queue. The core communicates with the SSR lane
via a two-phase handshake. The core signals a valid request
by pulling its read or write valid signal high. In case data
in the internal queue is available the respective SSR lane
signals readiness. Finally, if the core decides to consume its
register element it pulls its done signal high.

For this work, we have extended the SSR’s configuration
scheme [17] by adding shadow registers in which the core
can already push the configuration of the next memory
stream while the streaming is still in progress. This allows
for overlapping loop-bound calculation with actual compu-
tation when using the frep extension.

2.5 FPU Sequence Buffer
The FPU sequencer, depicted in Figure 4, is located at the
off-loading interface between integer core and FP-SS. It can
be configured using the frep instruction that provides the
following information:

• is_outer: 1 bit indicating whether to repeat the whole
kernel (consisting of max_inst) or each instruction.

Snitch (Core)

Write
Logic

Bypass frep
config

Current Loop Config
fmadd.d
ld addr
ld addr

FPU Subsystem

In
st

ru
ct

io
n

w
hi

ch
 c

an
 n

ot
be

 re
pe

at
ed

 g
o

he
re

.

instr data

Read
Logic

Ringbuffer

instructions available10

Stagger Current Stagger Configuration

Figure 4. Microarchitecture of the frep configurable FPU sequence
buffer. The core off-loads floating-point instructions (top) to the FP-SS
(bottom). Depending on the instruction type (whether it is sequence-
able), the instruction can use the bypass lane, be sequenced from the
FPU sequence buffer, or when an frep instruction indicates another
loop configuration request, it is saved into a configuration queue. The
optional stagger stage can shift register operand names to avoid false
dependency stalls and effectively provide a software-defined operand
re-naming.

(a)

li a0, 4
frep.outer a0, 2, 1, 0b1010

fadd.d fa0, ft0, ft2
fmul.d fa0, ft3, fa0
fadd.d fa1, ft0, ft3
fmul.d fa1, ft3, fa1
fadd.d fa0, ft0, ft2
fmul.d fa0, ft3, fa0
fadd.d fa1, ft0, ft3
fmul.d fa1, ft3, fa1

outer: repeat the entire group of instructions

repeat four times (value of a0)

repeat the next two fp instructions

stagger count: increment
once, then wrap

stagger rd and rs2

frep.pat rs1, ins, cnt, mask

outer: repeat group of ins.
inner: repeat each ins.

reg: holding number of iterations

imm: number of ins. to repeat

stagger count: number
of register staggers
befor wrapping

stagger mask: stagger reg?
[rd|rs1|rs2|rs3]

(b)

fadd.d fa0, ft0, ft2
fadd.d fa0, ft1, ft3
fadd.d fa0, ft2, ft3
fmul.d fa0, ft3, fa0
fmul.d fa0, ft4, fa0
fmul.d fa0, ft5, fa0

(c) (d)

pe
rio

d:
 2

re
pe

at
 4

 ti
m

es

st
ag

ge
r:

 1 pe
rio

d:
 2

re
pe

at
 3

 ti
m

es st
ag

ge
r:

 2

li a0, 3
frep.inner a0, 2, 2, 0b0100

li a0, 4
frep.outer a0, 2, 1, 0b1010

Figure 5. (a) Anatomy of the proposed FREP instruction. (b) An example
usage of FREP sequencing the next two instructions a total of four times
in an outer-loop configuration. (c) The corresponding instruction stream
as sequenced to the FP-SS including staggered registers (yellow bold
face) and (d) another example sequencing two instructions for a total of
three times in an inner-loop fashion and the resulting instruction stream
with staggering highlighted.

• max_inst: 4-bit immediate (up to 16 values), indicates
that the next max_inst should be sequenced.

• max_rep: register identifier that holds the number of
iterations (up to 232 iterations)

• stagger_mask: 4 bits for each operand
(rs1 rs2 rs3 rd). If the bit is set, the corresponding
operand is staggered.

• stagger_count: 3 bits, indicating for how many it-
erations the stagger should increment before it wraps
again (up to 23 = 8).

The frep instruction marks the beginning of a float-
ing-point kernel which should be repeated, see Figure 5 (a).
It indicates how many subsequent instructions are stored
in the sequence buffer, how often and how (operand stag-

ZARUBA et al.: AREA AND ENERGY EFFICIENT ARCHITECTURE FOR FLOATING-POINT WORKLOADS 7

gering, repetition mode) each instruction is going to be
repeated. To illustrate this we have given two examples in
Figure 5 (b, c, d). The first example sequences a block of
two instructions a total of four times. The second example
sequences two instructions three times. For this example,
the sequencing mode is inner, meaning that each instruction
is sequenced three times before the sequencer steps to the
next instruction in the block.

A particular difficulty arises from the fact that, due to
speed requirements, the FPU is (heavily) pipelined, and
floating-point instructions take multiple cycles until their
results become available for subsequent instructions. If the
sequencer is going to sequence a short loop with data-
dependencies amongst its operands, then the FP-SS is go-
ing to stall because of data dependencies and therefore
deteriorating performance, effective FPU utilization, and
energy efficiency. To mitigate the effects of stalling, the
sequencer can change the register operands, indicated by
a stagger mask, by adding a staggering count. Figure 5
(c, d) demonstrates the sequencer’s staggering capabilities.
The first example (c) staggers the destination register, and
the second source register a total of two times. The second
example only staggers the first source register a total of 3
times.

3 PROGRAMMING

Changing environments require a programmable system. To
avoid overspecialization, we propose a system composed of
many programmable and highly energy-efficient processing
elements by leveraging widely applicable ISA extensions. At
the foundation, the proposed system is a general-purpose
RISC-V-based multi-core system. The system has no private
data caches but offers a fast, energy-efficient, and high-
throughput software managed TCDM as an alternative. It
can be efficiently programmed using a RISC-V toolchain,
see Figure 6(a). The hardware provides atomic memory
operations as defined by RISC-V for efficient multi-core
programs. The program operates on physical addresses with
a minimal runtime.

The SSR and FREP extension can be used with the
provided header-only C library using an intrinsic-like style,
similar to the RISC-V vector intrinsics currently under de-
velopment [27]. A set of, hand-tuned library routines can
be used to exploit the proposed SSR and FREP hardware
extensions for optimal benefit of the proposed ISA exten-
sions, similar to the cuBLAS or cuDNN libraries provided
for Nvidia’s GPUs. Furthermore, a first Low Level Virtual
Machine (LLVM) prototype shows that automatic code gen-
eration for SSR setup is feasible [17].

3.1 Stream Semantic Registers

We provide a small, header-only, software library to pro-
gram the SSR efficiently. In particular, the programmer can
decide the dimension of the stream and select the appropri-
ate library function. For each dimension, the programmer
needs to provide a stride, a bound, and a base address
to configure the streamer. Finally a write to the SSR CSR
activates the stream semantic on register ft0 and ft1. After
the streaming operation finishes, the same CSR is cleared to

for (int i = 0; i < n; i++) {
 sum += A[i] * B[i];
}

fcvt.d.w fa0, zero
slli t0, a0, 3
add t0, t0, a1
fld ft0, 0(a1)
fld ft1, 0(a2)
addi a5, a5, 8
addi a4, a4, 8
fmadd.d fa0, ft0, ft1, fa0
bne a3, a5, -5
ret

la a5, SSR_CFG
li t1, 8
sw t1, STEP0(a5)
sw t1, STEP1(a5)
addi t1, a0, -1
sw t1, BOUND0(a5)
sw t1, BOUND1(a5)
sw a1, BOUND0(a5)
sw a2, BOUND1(a5)
csrsi ssrcfg, 1
fcvt.d.w fa0, zero
fmadd.d fa0, ft0, ft1, fa0
addi a0, a0, 1
bnez a0, -2
csrsi ssrcfg, 0
ret

setup_ssrs_dotp();
ssr_enable();
register double A asm("ft0");
register double B asm("ft1");

for (int i = 0; i < n; i++) {
 sum += A * B;
}
ssr_disable();

double dot_product(int n: a0, double* A: a1, double* B: a2)

setup_ssrs_dotp();
ssr_enable();
register double A asm("ft0");
register double B asm("ft1");

frep.outer n, 1, 0, 0
sum += A * B;

ssr_disable();

la a5, SSR_CFG
li t1, 8
sw t1, STEP0(a5)
sw t1, STEP1(a5)
addi t1, a0, -1
sw t1, BOUND0(a5)
sw t1, BOUND1(a5)
sw a1, BOUND0(a5)
sw a2, BOUND1(a5)
csrsi ssrcfg, 1
fcvt.d.w fa0, zero
frep.outer a0, 1, 0, 0
fmadd.d fa0, ft0, ft1, fa0
csrci ssrcfg, 1
ret

void setup_ssrs_dotp() {
 ssr_loop_1d(SSR_DM0, N, 8);
 ssr_loop_1d(SSR_DM1, N, 8);
 ssr_read(SSR_DM0, SSR_1D, A);
 ssr_read(SSR_DM1, SSR_1D, B);
}

C
 C

od
e

A
ss

em
bl

y
C

 C
od

e
A

ss
em

bl
y

Baseline: 0.33 flop/cycle

+ SSR: 0.66 flop/cycle

+ frep: 2 flop/cycle

Pe
su

do
 C

 C
od

e
A

ss
em

bl
y

H
ot

 L
oo

p
Se

tu
p

H
ot

 L
oo

p
Se

tu
p

H
ot

 L
oo

p
Se

tu
p

-
slli
add
-
-
addi
addi
-
bne
-
-

fcvt.d.w
-
-
fld
fld
-
-
fmadd.d
-
fld
fld

Trace:

3
in

t i
ns

.

3
fp

 in
s.

Integer Core: FP SS:

6 tot ins.

Integer Core: FP SS:

la
li
sw
sw
addi
sw
sw
sw
sw
-
-
addi
bnez
-
addi
bnez
-
addi
bnez
-

-
-
-
-
-
-
-
-
-
csrsi
fcvt.d.w
-
-
fmadd.d
-
-
fmadd.d
-
-
fmadd.d

2
in

t i
ns

.

1
fp

 in
s.

3 tot ins.

2x

Integer Core: FP SS:

la
li
sw
sw
addi
sw
sw
sw
sw
-
-
frep.out
ret
int ins
int ins
int ins
int ins

-
-
-
-
-
-
-
-
-
csrsi
fcvt.d.w
-
fmadd.d
fmadd.d
fmadd.d
fmadd.d
fmadd.d

1 tot ins.

1
fp

 in
s.

Pseudo Dual Issue
Integer core continues
execution of floating-point
independent code.

(a)

(c)

(e)

(b)

(d)

3x
6x

(f)

Trace:

Trace:

Dependency between integer and
floating point subsystem prevent
parallel execution and run-ahead of
integer core.

Figure 6. A dot product kernel in C and the corresponding RISC-V
assembly for all three extensions (a), (c), (e). Traces of each kernel
are shown in (b), (d) and (f). Speed-ups of 2x and 6x for the proposed
extensions. (f) also depicts the pseudo dual issue behavior.

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. (VOL), NO. (NO), (MONTH) (YEAR)

strip_mine:
 vsetvli a3, a0, e64
 vld v0, 0(a1)
 vld v1, 0(a2)
 vfmul.vv v0, v0, v1
 vfredosum.vs v2, v0, v1
 slli t0, a3, 3
 add a1, a1, t0
 add a2, a2, t0
 sub a0, a0, a3
 bnez a0, strip_mine

double dot_product(int n: a0, double* A: a1, double* B: a2)
Ve

ct
or

Sc
al

ar

calculate next index offset and
bump index pointer into A and B

move from vector register to fp register

load vector A and B with unit stride

multiply and reduce into v2

check whether we are done strip mining

set element size to 64, get VL into a3

vfmv.f.s fa0, v2

Figure 7. The same dot product kernel as in Figure 6 in RISC-V vector
assembly [26]. The vector code is written independently of the vector
length (VL), software needs to break the input problem size n down to
VL in a strip mine loop. Of the ten instructions in the strip mine loop,
five instructions are executed on the integer core while the other half is
executed on the vector unit.

deactivate the extension. The whole programming sequence
for an example kernel is depicted in Figure 6(c). On the ex-
ample of the dot product kernel, we can see the speed-up of
using the SSR extension over the baseline implementation.
The vanilla RISC-V implementation executes a total of six
instructions in its innermost loop, of which three are integer,
and three are floating-point instructions, see Figure 6(b). The
SSR-enhanced version, on the other hand, elides all loads
and only needs to track one loop counter to determine the
loop termination condition. This saves three instructions
and provides a 2x speed-up. The loop setup overhead is
slightly higher, and a detailed analysis can be found in the
original SSR paper [17]. For this system, we have enhanced
the SSR system to provide the programmer with shadow
registers for the loop configuration. Therefore, the integer
core can already set up the next loop iteration and store
the configuration in the shadow registers while the current
iteration is still in progress. When the current iteration
finishes, the SSR configuration logic automatically starts the
iteration for the new configuration.

3.2 FPU Sequencer
The frep instruction configures the FPU sequencer to auto-
matically repeat and autonomously issue the next n float-
ing-point instructions to the FPU. This completely elides
all loop instructions in the innermost loop iteration as
the branch decision and loop counting is pushed to the
sequencer hardware. For the dot product example, this only
leaves one instruction in the innermost loop and provides
a speed-up of 6× compared to the baseline, and a 3×
improvement over the plain SSR version of the kernel see
Figure 6(f). As the FPU sequencer frees the integer core of
issuing instructions to the FP-SS, it can continue executing
integer instructions. This makes the core pseudo dual-issue,
see Figure 6(f). The pseudo-dual issue is a property of the
decoupled design of FP-SS and integer core: Both subsys-
tems will execute as many instructions in parallel until they
detect a blocking event such as a data movement from or to
the FP-SS and a dependent instruction.

For the same dot product kernel, we have also listed
the corresponding RISC-V vector assembly as a comparison
point, see Figure 7. Depending on the hardware’s maximum
VL and the problem size, software needs to perform a strip
mine loop over the input data. For each iteration, the setvl

instruction saves the number of elements of subsequent
vector instructions into its destination register. The integer
core performs bookkeeping and pointer arithmetic for each
iteration. Of the ten instructions of the strip mine loop, only
five execute on the vector unit, of which only two perform
arithmetic operations.

3.2.1 Operand Staggering
The complex floating-point operations performed by the
FPU require pipelining to achieve reasonable clock frequen-
cies. Pipelining, on the other hand, increases the latency of
floating-point instructions, which makes it impossible for
one floating-point instruction to directly re-use the result
of the previous instruction without stalling the pipeline.
Depending on the speed target, we expect between two and
six pipeline stages for floating-point multiply-add. There-
fore the next operation would need to wait for the same
number of cycles until the operand becomes available. Some
of these stalls can be hidden by executing independent
floating-point operations in the meantime. This technique
requires partial unrolling of the kernel. To combine this
efficiently with the FREP extension, we provide an option
for the sequencer to stagger its operands. The staggering
logic automatically increases the operand names of the
issued instruction by one. The frep command takes an
additional stagger mask and stagger count. The mask de-
fines which register should be staggered. The mask contains
one bit for all three source operands and the destination
operand, four bits in total. If the corresponding bit is set,
the FPU sequencer increases the register name by one until
the stagger count has been reached. Once the count is
reached, the register name wraps again. The anatomy of the
frep instruction including a sample trace with staggering
enabled can be seen in Figure 5 (a).

4 RESULTS

We have synthesized, placed and routed an eight core
configuration with two hives (each with four cores),
128 KiB of TCDM, and 8 KiB of instruction cache using the
SYNOPSYS DESIGN COMPILER 2017.09 and CADENCE IN-
NOVUS 17.11 in a modern GLOBALFOUNDRIES 22 nm FDX
technology. The floorplan of this cluster is depicted in Fig-
ure 8. For the synthesis we have constrained the design
to close timing at 1 GHz in worst case conditions (SSG2,
0.72 V, −40 °C). The subsequent place and route step was
constrained to 0.7 GHz. Sign-off static timing analysis (STA)
using SYNOPSYS PRIMETIME 2019.12 showed that the de-
sign runs at 755 MHz in worst case conditions and 1.06 GHz
in typical conditions (TT3, 0.8 V, 25 °C).

4.1 Microkernels
To evaluate the performance, power, and energy-efficiency
of the architecture, we have implemented a set of different
data-oblivious parallel benchmarks, where the control flow
only depends on a constant number of program parameters.
We selected four complementary kernels:

2. p-channel metal–oxide–semiconductor field-effect transistor
(MOSFET) globally slow, n-channel MOSFET globally slow

3. p-channel MOSFET typical, n-channel MOSFET typical

ZARUBA et al.: AREA AND ENERGY EFFICIENT ARCHITECTURE FOR FLOATING-POINT WORKLOADS 9

TCDM
Interconnect

TCDM
+

Atomics

CC 0

CC 1

CC 4
CC 5

CC 7

Shared
Instruction

Cache

Mul/Div

Snitch

FPU SS

10
46

 μ
m

858 μm

TCDM
Interconnect

TCDM

CC 1

CC 4 CC 5 CC 7

Shared
Instruction

Cache

Mul/Div

FPU SS

CC 2
CC 3

CC 6

CC 0

Snitch

Figure 8. Placed and routed design of a Snitch Cluster. The cluster is
configured to contain eight cores per Hive and one Hive per cluster.
For CC 0 we also highlighted the Snitch core and the FP-SS. The
configuration contains 32 banks of TCDM, a total of 128 KiB and 8 KiB
of instruction cache memory.

• Dot product: A simple dot product implementation that
calculates the scalar product of two arrays of length
n. Included because it is a fundamental vector-vector
operation (basic linear algebra subprograms (blas) 2).

• ReLU: This kernel applies a rectified linear unit (ReLU)
to the elements of an array of length n. The kernel is
often used as an activation function for neural networks
(n blas 1n).

• Matrix multiplication using the dot product method:
A chunked implementation of matrix multiplication of
size n × n. A highly relevant kernel for the machine
learning domain (blas 3). The output matrix is chunked
across the cores.

• FFT: Implementation of a parallel FFT algorithm of
size n. Included to show the versatility of the tightly
coupled core and the proposed extensions. The FFT is
based on Cooley–Tukey’s algorithm.

• AXPY (a · ~x + ~b) on vectors of length n: Included as
a memory-bound kernel. As the benchmarked system
only provides two SSRs, the core needs to perform the
store operation, which prevents any speed-ups from
FREP. Furthermore, the kernel is memory-bound as it
requires three memory accesses per two floating-point
operations but each core can only sustain two memory
operations through its two ports in the TCDM intercon-
nect (blas 1).

• kNN: This algorithm performs a point-wise Euclidean
distance calculation between all points (n) in the sys-

tem and a sample. In a second sorting step, the k
closest points are returned as classification results. The
SSR+FREP can significantly speed-up the Euclidean
distance calculation. However, the dominant factor of
the over-all runtime is the sorting step, which can not
easily be accelerated using SSR and FREP. To provide
maximum insight into the achievable improvement, we
focused our measurements on the distance calculation.
Parallelization is achieved by distributing the sampling
step amongst all cores.

• Monte Carlo method approximating π in n steps.
The integer core generates random numbers while the
floating-point subsystem evaluates the function to be
integrated. SSR and FREP make for an exciting ap-
plication since the pseudo-dual issue allows the two
tasks to entirely overlap and execute in parallel on the
integer core and floating-point subsystem, respectively.
Interestingly, we see a slight drop in speed-up in the
pure SSR case because the problem needs to be re-
formulated for SSR usage, which in turn exhibits an
adversarial instruction pattern in the FP-SS (many de-
pendent floating-point instructions).

• 2D Convolution on a 32 × 32 image with a 7 × 7 kernel
(kernel size is from the first layer of Google LeNet,
the input image size has been truncated to reduce the
problem runtime): A highly relevant workload for the
machine-learning and data-science domain. The high
data-reuse and affine access pattern make it an ideal
candidate for enhancement with SSRs and FREP.

For each kernel we provide a baseline C implementation4

(without auto-vectorization or special intrinsics), an im-
plementation which makes use of SSRs and one which
combines SSRs and FREP. We have made sure (partially by
using inline-assembly) that the generated baseline code is
optimal and executes well on the Snitch core. Speed-ups are
measured in a cycle-accurate register transfer level (RTL)
simulation, similarly power estimations are measured in a
post-layout simulation. All the kernels input and output
data set sizes are chosen so that they fit into the TCDM
to avoid measuring effects of the cluster-external memory
hierarchy.

4.2 Single-Core

4.2.1 Performance
The single-pipeline stage of the core lets it achieve a very
high IPC of close to one for most of the kernels. The only
effective source of stalls comes from the memory interface
if there is a load-use dependency present or when the load
result contends for the single write port of the core’s RF.
The proposed ISA extensions, SSR, and FREP reduce the
number of explicit load and store instructions as well as the
branching overhead. For above-mentioned microkernels we
can report single-core speed-ups of over 6x in Figure 9 on
certain benchmarks. The single-core case presents an ideal-
ized execution environment as there is no contention on the
shared TCDM. We observe interesting effects: The matrix
multiplication, 2D convolution, kNN distance calculation,
and the Monte Carlo benchmark achieve an IPC of more

4. riscv32-unknown-elf-gcc (GCC) 7.2.0 -03

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. (VOL), NO. (NO), (MONTH) (YEAR)

Table 1
Single and multi-core utilization of the FPU, the FP-SS, the integer

core, and total IPC for all benchmarks. A high baseline instructions per
cycle (IPC) ensures a fair comparison with the proposed ISA

extensions.

Utilization

Single-Core Multi-Core (8 Cores)

Kernel FPU FPSS Snitch IPC FPU FPSS Snitch IPC

Dot Pr. 256 0.17 0.50 0.50 1.00 0.20 0.58 0.22 0.80
+ SSR 0.61 0.63 0.35 0.98 0.35 0.38 0.32 0.69
+ SSR + FREP 0.87 0.89 0.06 0.96 0.35 0.41 0.18 0.59

Dot Pr. 4096 0.25 0.75 0.25 1.00 0.24 0.70 0.24 0.94
+ SSR 0.66 0.66 0.34 1.00 0.57 0.58 0.32 0.90
+ SSR + FREP 0.98 0.99 0.01 0.99 0.72 0.74 0.05 0.79

ReLU 0.14 0.42 0.57 1.00 0.13 0.37 0.53 0.90
+ SSR 0.32 0.32 0.67 0.99 0.23 0.23 0.56 0.79
+ SSR + FREP 0.88 0.89 0.07 0.96 0.36 0.36 0.23 0.62

DGEMM 162 0.19 0.58 0.17 0.75 0.17 0.51 0.15 0.66
+ SSR 0.23 0.26 0.53 0.80 0.20 0.23 0.49 0.72
+ SSR + FREP 0.86 0.97 0.07 *1.04 0.63 0.71 0.13 0.84

DGEMM 322 0.24 0.26 0.52 0.77 0.24 0.26 0.51 0.77
+ SSR 0.24 0.26 0.52 0.77 0.24 0.26 0.51 0.77
+ SSR + FREP 0.93 0.99 0.03 *1.02 0.85 0.90 0.04 0.94

FFT 0.36 0.49 0.23 0.72 0.26 0.35 0.23 0.58
+ SSR 0.54 0.58 0.32 0.90 †0.21 †0.23 0.41 0.65
+ SSR + FREP 0.57 0.62 0.19 0.81 †0.24 †0.27 0.42 0.69

AXPY‡ 0.19 0.77 0.20 0.97 0.14 0.63 0.19 0.82
+ SSR 0.34 0.67 0.27 0.95 0.23 0.47 0.30 0.77

2D Conv. 0.14 0.43 0.57 1.00 0.14 0.42 0.58 1.00
+ SSR 0.60 0.60 0.39 0.99 0.60 0.61 0.39 0.99
+ SSR + FREP 0.97 0.99 0.04 *1.03 0.91 0.93 0.04 0.97

kNN 0.15 0.31 0.40 0.70 0.14 0.31 0.40 0.70
+ SSR 0.30 0.30 0.64 0.95 0.30 0.31 0.66 0.97
+ SSR + FREP 0.35 0.36 0.76 *1.13 0.35 0.37 0.79 *1.16

Monte Carlo 0.14 0.18 0.59 0.77 0.13 0.16 0.54 0.70
+ SSR 0.15 0.21 0.61 0.82 0.14 0.20 0.57 0.77
+ SSR + FREP 0.22 0.22 0.90 *1.12 0.20 0.20 0.82 *1.02

* Pseudo-dual issue behavior with a cumulative IPC higher than one
† Reduction of FPU utilization because of SSR setup and frequent re-
synchronization between FFT stages. We still show a speed-up of 2.8×
(see Figure 13)
‡ AXPY can not be enhanced using FREP because the current ar-
chitecture provides only two streamers. For the AXPY kernel three
streamers would be needed.

than one by overlapping the computation of one block with
the SSR setup and integer instructions of the next block.

In Table 1 we are tracking four metrics:

1) FPU utilization: The total number of arithmetic float-
ing-point instructions executed. We consider (fused)
arithmetic operations, casts, and comparison instruc-
tions as floating-point operations.

2) FP-SS utilization: Includes all instructions that are off-
loaded to the FP-SS. This counts all floating-point in-
structions as well as floating-point loads and stores.

3) Snitch utilization: Contains all instructions that are not
offloaded to the FP-SS.

4) Total IPC: Snitch utilization and FP-SS utilization result

Dot
Pro

d

n=25
6
Dot

Pro
d

n=20
48 ReLU

n=25
6

Matm
ul

n=16 Matm
ul

n=32 FFT

n=12
8

AXPY

n=25
6

Con
v 2

D

n=32
2 x7

2
kN

N
n=50

Mon
te

Carl
o

n=32
00

Kernel

0

1

2

3

4

5

6

7

Sp
ee

d-
Up

 (n
or

m
al

ize
d

to
 b

as
el

in
e)

Execution Time Speed-Up (Single-Core)
Baseline
SSR
SSR+FREP

Figure 9. Single-core speed-up reported for each microkernel and en-
abled extension. By using our proposed SSR and FREP extensions can
achieve speed-ups from 1.7× to over 6× on selected benchmarks.

in the total IPC. For the baseline case, this metric is
interesting as due to the single pipeline stage and the
tightly coupled memory subsystem we achieve an IPC
of one for almost every kernel in the single-core case.
For the multi-core system, contentions on the memory
interface slightly limit the attainable IPC. This ensures a
fair baseline for further evaluating our ISA extensions.
The reported IPC for the FREP enhanced kernels in-
cludes the FREP generated instructions.

The single-issue nature of the baseline core limits the
maximum achievable FPU utilization as we need to explic-
itly move data from memory into the core’s register file. This
ranges from 0.14 to 0.36 depending on the benchmark. We
can see a very high core utilization as the integer core is
supplying the FPU with instructions.

The introduction of SSR relaxes these constraints as we
are translating all loads and stores into implicitly encoded
register reads. We can see a positive effect on execution time
as we are not using an issue slot (cycle) of the integer core to
issue load(s)/store(s). We can still see that the integer core
is busy issuing arithmetic floating-point instructions to the
FPU by observing a high Snitch utilization.

Finally, with the introduction of FREP, we significantly
reduce the pressure on the integer core. The integer core
only issues the floating-point operations once into the frep
buffer from which it is being sequenced multiple times to
the FP-SS. We can observe a very low integer core utilization
of somewhere between 0.03 to 0.24. As we free the integer
core from issuing floating-point instructions on every cycle,
we can easily keep the FPU busy. This results in a very high
FPU utilization of 0.57 to 0.93. A high FPU utilization, in
turn, means high energy efficiency. For the single-core case
we can see an improvement in speed-up (see Figure 9) and
FPU utilization for all microkernels. The FFT benchmark
shows a reduction in IPC as more frequent SSR set-up and
load-use dependencies insert stall cycles which result in
pipeline bubbles.

4.2.2 Area
The integer core ISA is configurable to either be RV32I or
RV32E. Both support the same instructions but differ in the

ZARUBA et al.: AREA AND ENERGY EFFICIENT ARCHITECTURE FOR FLOATING-POINT WORKLOADS 11

Hive Atomic UnitsTCDM Interconnect Rest

Core Complex (8x) Instruction Cache Shared Mul/Div Rest

FP SS Snitch FPU Seq Regs Rest

3304

1844

188

21142
FPU Regfile RegfileSSR Rest CorePerf Cnt LSULSU

5
3
5
3

2
1

16
12

24
17

96
67

11
50

2
9

1
5

8
36

142
76

21
11

13
7

8
4

4
2

1492
81

319
17

27
2

6
0.3

1844
56

155
5

1118
34

84
3

102
4

TCDM

kGE
%[]

Figure 10. Hierarchical area distribution of the Snitch cluster. The en-
tire cluster has a size of approximately 3.3 MGE. 34 % of the area is
occupied by the TCDM. The instruction cache makes up for 10 % of the
cluster’s area. Of each CC the FP-SS accounts for 76 % while the integer
core only accounts for 11 % of the CC’s area. In total all integer cores
occupy only 5 % of the cluster’s total area while the FPUs make up for
over 23 % of the total cluster area. The Snitch core has been configured
with RV32I and a FF-based RF and PMCs. See Figure 2 for an overview
of the system’s main components.

RV32E RV32I
Supported Instruction Set

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ar
ea

 [k
GE

]

Area of Snitch Configurations
latch RF w/o PMC
latch RF w/ PMC
ff RF w/o PMC
ff RF w/ PMC

Figure 11. Area of different integer core configurations. We provide
choice of the ISA variant, of the RF and inclusion of PMC.

size of the RF. While RV32I comes with 32 general purpose
integer register, RV32E only provides 16. As the CPU design
is heavily dominated by the RF (see Figure 10) this design
choice has a significant influence on the core’s area. Further-
more, as mentioned in Section 2.1.1 we provide a latch-based
and a FF-based RF implementation. The first being 50 %
smaller in area while the latter can be used if latches are
not available in the standard-cell library. Moreover, PMCs
can be enabled separately which adds approximately 2 kGE
in area. Altogether this makes the integer core configurable
from 9 kGE (RV32E, latch-based RF without PMC) up to
21 kGE (RV32I, flip-flop-based RF with PMC), see Figure 11.
The SSR hardware consumes 16 kGE to implement address
generation and control logic as well as load data buffering.
This puts it at 12 % of the FP-SS and 8.5 % of the CC. The
FREP extension, configured with 16 entries, takes up 13 kGE
which is 7 % of the FP-SS’s area and 3.2 % of the overall
system on chip (SoC) (a total of 38 kGE to 50 kGE for the
CC).

Dot
Pro

d

n=25
6
Dot

Pro
d

n=20
48 ReLU

n=25
6
Matm

ul

n=16 Matm
ul

n=32 FFT

n=12
8

AXPY

n=25
6

Con
v 2

D

n=32
2 x7

2
kN

N
n=50

Mon
te

Carl
o

n=32
00

Kernel

0

1

2

3

4

5

6

7

8

Sp
ee

d-
Up

Execution Time Speed-Up (Single-Core vs. 8-Core Multi-Core)
Baseline
SSR
SSR+FREP

Figure 12. Single-core vs. an octa-core cluster speed-ups. Ideal speed-
ups of eight are achieved for the pure SSR 2D convolution and the
kNN baseline. Very high multi-core speed-ups are measured for matrix
multiplication, 2D convolution, kNN, and Monte Carlo methods. The
FFT, dot product and AXPY show less speed-ups as (mostly due to
the small problem size) the reduction and synchronization of all cores
have a stronger impact on the runtime.

Dot
Pro

d

n=25
6
Dot

Pro
d

n=20
48 ReLU

n=25
6

Matm
ul

n=16 Matm
ul

n=32 FFT

n=12
8

AXPY

n=25
6

Con
v 2

D

n=32
2 x7

2
kN

N
n=50

Mon
te

Carl
o

n=32
00

Kernel

0

1

2

3

4

5

6

Sp
ee

d
Up

 (n
or

m
al

ize
d

to
 b

as
el

in
e)

Cluster Execution Time Speed-Up (8 Cores)
Baseline
SSR
SSR+FREP

Figure 13. Multi-core speed-up for an octa-core cluster for each micro-
kernel and enabled extension. We can achieve speedups from 1.29× to
6.45×.

4.3 Multi-Core

4.3.1 Performance

For the multi-core performance evaluations we have instan-
tiated an eight core cluster with 8 KiB of instruction cache
and 128 KiB of TCDM memory (see Figure 8).

Table 2
FPU Utilization (η) on a 32 × 32 matrix multiplication. Execution time

speed-up compared to the single-core baseline (∆) and speed-up
compared to a system with half the cores (δ.)

Cores η δ ∆ # Cores η δ ∆

1 0.89 1.00 1.00 8 0.87 2.00 7.80
2 0.90 1.98 1.98 16 0.81 1.87 14.62
4 0.87 1.97 3.91 32 0.82 1.89 27.61

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. (VOL), NO. (NO), (MONTH) (YEAR)

Table 3
Normalized achieved performance between compute-equivalent Snitch
Cluster, Ara [14], and Hwacha [28] instances for a matrix multiplication,

with different n× n problem sizes.

Π 4 FPUs 8 FPUs 16 FPUs

n Snitch Ara Hwacha* Snitch Ara Hwacha Snitch Ara Hwacha

16 68.2 49.5 — 63.2 25.4 — 58.3 12.8 —
32 87.1 82.6 49.9 84.8 53.4 35.6 81.4 27.6 22.4
64 93.4 89.6 — 91.7 77.5 — 89.0 45.6 —

128 96.0 94.3 — 94.7 93.1 — 94.1 78.8 —
* Performance results extracted from [28]

4.3.1.1 Parallelization: We have parallelized our
kernels to distribute work evenly on all cores. Synchro-
nization between cores is achieved using RISC-V’s atomic
extension and support for atomics on the TCDM and on AXI
using AXI5’s atomic extension and an atomic adapter [29].
Depending on the workload, parallelization achieves a
speed-up from 3× up to 8× for the measured octa-core
cluster compared to the single-core version (see Figure 12).
Ideal speed-ups of eight are achieved for the pure SSR
2D convolution and the kNN baseline. High multi-core
speed-ups can be achieved for matrix multiplication, 2D
convolution, kNN, and Monte Carlo methods. The FFT, dot
product and AXPY kernels do not scale that well, mostly
due to small problem size which amplifies the reduction
and synchronization impact on the overall runtime.

4.3.1.2 Multi-core speed-up with SSR and FREP: As
can be seen in Figure 13 we achieve speed-ups from 1.29×
to 6.45× depending on the benchmark. As in the single-core
case we can use the proposed SSR and FREP extensions to
elide explicit load/stores and control flow instructions. In
contrast to the single-core case (Figure 9) we can observe
a slight reduction in speed-up as operand values are po-
tentially (temporarily) unavailable due to contentions on
the shared TCDM (SRAM bank conflicts), as well as effects
of Amdahl’s law. Furthermore, we achieve over 94 % FPU
utilization for matrices of size 128 × 128. As can be seen
in Table 3 we significantly, by a factor of 4.5, outperform
existing vector processors on small matrix multiplication
problems. On larger problems we can show equal or better
performance.

The FFT benchmark demonstrates that the proposed ISA
extensions are also applicable on less linear problems such
as FFT. While we see a decreased FPU utilization in the
multi-core system (Table 2) we can observe a total speed-
up of 2.8×. The decreased FPU utilization is attributable to
the less linear access pattern and the higher core synchro-
nization frequency for each FFT stage, which in turn leads
to higher contentions as cores are forced to start fetching
at the same time from the same memory bank upon each
(re-)synchronization.

The Monte Carlo problem is interesting as the pure SSR
version is slower than the baseline. This is attributed to the
fact that the problem needs to re-formulated to operate on
blocks of random input data to be beneficial to the streamer
infrastructure. The block-wise operation in contrast exhibits
floating-point data dependencies which could have been
filled with integer instructions in the baseline case. Finally,
the introduction of FREP can then fully exploit the fact

Hive TCDM Interconnect Rest

Core Complex (8x) Instruction Cache Rest

FP SS Snitch FPU Seq Demux Rest

171

114

14

0.5311.9
FPU Regfile RegfileSSR Rest CoreLSU

0.50
4

0.97
8

1.49
13

8.94
75

0.19
35

0.02
4

0.32
61

11.90
86

0.53
11

0.22
2

0.85
6

0.29
2

107.10
94

4.82
4

2.22
2

113.89
67

8.89
5

38.30
22

9.92
6

TCDM

mW
%[]

Figure 14. Hierarchical power distribution estimates obtained using
SYNOPSYS PRIMETIME 2019.12 at 1 GHz and 25 °C on a 32×32 matrix
multiplication kernel using the proposed SSR and FREP extensions. All
integer core only use 1 % of the overall power. The necessary hardware
for the SSRs and the FREP extension uses less than 4 % and 1 % of
the total power respectively. The Snitch core has been configured with
RV32I with an FF-based RF and PMCs

that integer and floating-point pipeline can be executed in
parallel exhibiting pseudo-dual-issue behavior. The algorithm
is still dominated by the integer core generating good ran-
dom numbers which effectively limits the overall speed-
up (we use the xoshiro128+ linear pseudorandom number
generator introduced by Blackman and Vigna [30]). The
RISC-V bit-manipulation extension or a special function
unit (SFU) dedicated to generating (good) random numbers
could significantly enhance this kernel’s speed-up.

4.3.2 Area
While the impact of the FREP extension is confined to CC
the SSR extension also has a cluster-level impact. With SSR
enabled, each core has two ports into the TCDM, increasing
the area of the fully connected interconnect. In the selected
implementation of an eight-core cluster, we have 16 request
ports and 32 memory banks (providing a banking-factor of
two). With 155 kGE the TCDM interconnect occupies 5 % of
the overall area. The complexity of the crossbar scales with
the product of its master and slave ports. We have estimated
the complexity of a 32 requests and 64 banks crossbar to be
around 630 kGE and the area of a 64 request ports and 128
banks to be around 2.5 MGE.

4.3.3 Energy Efficiency and Power
We have selected a 32×32 matrix multiplication benchmark
running on a post-layout netlist to give an indicative power
break-down of the system’s component (Figure 14). For the
given benchmark the cluster consumes a total of 171 mW of
which 63 % are consumed in the CC, 5 % in the interconnect
and 22 % in the SRAM banks of the TCDM. 42 % of the
energy is spent in the actual FPU on the computation. While
the integer control core only uses 1 % of the overall power.
The additional hardware for SSR and FREP only make up
for a fraction of the overall power consumption, less than
4 % and 1 % respectively. What is particularly interesting
ist that the instruction cache only consumes 4.8 mW or
4 % of the total cluster power. This is due to the FREP
extension servicing the FPU from its local sequence buffer,

ZARUBA et al.: AREA AND ENERGY EFFICIENT ARCHITECTURE FOR FLOATING-POINT WORKLOADS 13

Dot
Pro

d

n=25
6
Dot

Pro
d

n=20
48 ReLU

n=25
6
Matm

ul

n=16 Matm
ul

n=32 FFT

n=12
8

AXPY

n=25
6

Con
v 2

D

n=32
2 x7

2
kN

N
n=50

Mon
te

Carl
o

n=32
00

Kernel

0

25

50

75

100

125

150

175

Po
we

r [
m

W
]

Cluster Total Power Consumption (8 Cores)
1 GHz, 0.8V, 25°C

Baseline
SSR
SSR+FREP

Figure 15. Power consumption of an octa-core cluster for all microker-
nels and proposed ISA extensions.

and the Snitch integer core exhibiting a very low activity
that can mostly be served from its L0 instruction cache,
that has been implemented as a FF-based memory and
can be read and written using less energy compared to
SRAMs. The total power of all micro-benchmarks is given
in Figure 15. As we only see a marginal increase in power
for the given benchmarks but a significant improvement in
execution speed and a high FPU utilization we can observe
a similiar increase in energy efficiency. Figure 16 shows a 1.5
to 4.1 increase in energy efficiency compared to the baseline.
The systems achieves an absolute peak energy efficiency of
close to 80 DPGflop/s/W and 104 SPGflop/s/W for double
precision matrix multiplication and up to 95 DPGflop/s/W
for the 2D convolution benchmark.

To put the absolute energy efficiency into perspective,
we estimated the achievable peak energy efficiency in
22 nm. Every architecture, even highly specialized accel-
erators, must at least perform two loads and a FMA in-
struction for each element. We can, therefore, estimate the
energy-efficiency upper bound of 120 DPGflop/s/W. Snitch
achieves 79 % of this theoretical peak efficiency.

5 RELATED WORK

The problem of keeping the FPU utilization high has been
the subject of a lot of architecture research. The most
prominent and widely used techniques encompass super-
scalar (out-of-order), general-purpose, CPUs, (Cray-style)
vector architectures and general-purpose compute using
GPUs. While these architectures promise to deliver high
performance, they do not target energy efficiency as their
primary design goal.

5.1 Vector Architectures

Cray-style vector architectures are enjoying renewed pop-
ularity with Arm providing their SVE [13] and RISC-V
actively developing a vector extension [26]. An early, but
complete version of the RISC-V vector extension in 22 nm
called Ara, has been implemented by Cavalcante et al. [14].
The same technology node and configuration size allow for
a direct comparison to our architecture. As a comparison

Dot
Pro

d

n=25
6
Dot

Pro
d

n=20
48 ReLU

n=25
6
Matm

ul

n=16 Matm
ul

n=32 FFT

n=12
8

AXPY

n=25
6

Con
v 2

D

n=32
2 x7

2
kN

N
n=50

Mon
te

Carl
o

n=32
00

Kernel

0

20

40

60

80

100

En
er

gy
 E

ffi
ce

nc
y

[G
Fl

op
/s

W
]

Cluster Energy Efficency (8 Cores)
1 GHz, 0.8V, 25°C

Baseline
SSR
SSR+FREP

Figure 16. Energy efficiency of an octa-core cluster for all microker-
nels and proposed ISA extensions. The proposed cluster architecture
achieves up to 80 Gflop/s W peak energy efficiency at 1 GHz, 0.8 V and
25 °C. For the different kernels we achieve an increase of 1.5 to 4.9 in
energy efficiency. The Monte Carlo benchmark offers a poor energy-
efficiency per flop as the generation of good random numbers takes up
significant amounts of energy (we use the xoshiro128+ algorithm for fast
floating-point number generation [30]).

Table 4
Comparison with Ara [14] and NVIDIA Xavier SoC [31] on an n× n

matrix multiplication.

Snitch Ara Volta SM Carmel*

Unit Us [14] [31] [31]

Problem Size n 32 32 256 256
Base ISA RV RV Volta Arm
Technode [nm] 22 22 12 12
Clock (typical) [GHz] 1.06 1.17 1.38 2.27
Clock (worst) [GHz] 0.75 0.87 — —
Peak SP [Gflop/s] 16.96 18.72 176 36.25
Peak DP [Gflop/s] 16.96 18.72 †— 18.13
Sustained SP [Gflop/s] 14.38 10.00 ‡153 §22.10
Sustained DP [Gflop/s] 14.38 10.00 †— ‖9.27
Utilization SP [%] 84.80 — 86.66 60.97
Utilization DP [%] 84.80 53.40 †— 51.15
Impl. Area# [mm2] 0.89 1.07 11.03 **7.37
Area Eff. SP [Gflop/s mm2] 25.83 — 13.84 3.00
Area Eff. DP [Gflop/s mm2] 25.83 17.53 13.84 1.26
Tot. Power SP [W] 0.13 — 2.91 2.16
Tot. Power DP [W] 0.17 0.46 †— 1.85
Leakage [mW] 12 21.1 — —
Energy Eff. SP [Gflop/s W] 103.84 — 52.39 10.24
Energy Eff. DP [Gflop/s W] 79.42 39.9 †— 5.01

* Single-core, estimated from the eight core core complex including
L3 cache
† The Volta SM in Tegra Xavier does not contain any double precision
FPUs
‡ Measured using the SGEMM implementation of CUBLAS [32]
§ Measured using an SGEMM implementation of the ARM
ComputeLibary using NEON ISA extension [33]
‖ Measured using the OpenBLAS implementation [34]
Post-layout area measured from die photograph
** Including proportionate L2 and L3 caches

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. (VOL), NO. (NO), (MONTH) (YEAR)

point, we chose an eight-lane configuration that delivers a
peak of 16 DPflop/cycle equal to the octa-core cluster we
have presented in the evaluation section. The vector archi-
tecture accelerates programs that work on vectored data by
providing a single-instruction which operates on (parts of)
the vector. The instruction front-end of the attached core
is feeding the vector unit special vector instructions that
can then independently operate on chunks of data from the
vector register file. The vector register file is similar in size
and access latency to the TCDM in a Snitch cluster. How-
ever, in stark contrast to the vector register file, our system
allows us to access individual elements of the TCDM as it is
byte-wise addressable. The vector architecture compensates
this fact by providing dedicated shuffle instructions, which,
in contrast, consume precious instruction bandwidth and
issue-slots.

As a consequence, the scalar core needs to issue many
instructions to the vector architecture that potentially bot-
tleneck the instruction front-end and hence performs poorly
on smaller and finer granular problems (see Table 3). On
smaller matrix multiplication problems, our architecture
significantly outperforms, by a factor of 4.5, the Ara vec-
tor architecture as our TCDM interconnect and byte-wise
access to the TCDM provides implicit shuffle semantic. On
increasing problem sizes, the vector architecture catches up
in performance, but we can retain superiority even for larger
problem sizes (see Table 3).

The rigid, linear access pattern, superimposed by the na-
ture of vectors, imposes yet another problem: To compensate
for the lack of access semantic into the register file additional
ISA extensions such as 2D and tensor extensions are needed
to encode the more complicated access patterns. As the
shape of the computation is encoded in the instruction, this
significantly bloats the encoding space, which in turn makes
the instruction-frontend and decoding logic more complex
and hence more energy-inefficient. In contrast the SSR and
FREP extension provide up to 4 access dimensions in their
current implementation. With the implicit load/store en-
coding into register reads/writes, no new instructions are
needed, and the instruction-frontend and decoding logic is
identical to the scalar core.

Table 4 compares several figures of merit between Ara
(Ariane’s vector extension) and the same size Snitch sys-
tem. Both systems offer the same number of floating-point
operations per cycle at comparable clock-frequency. On the
chosen problem size of a 32 × 32 matrix multiplication, our
system offers more than 1.5× sustained floating-point oper-
ations at twice the energy efficiency of almost 80 Gflop/s W
compared to 40 Gflop/s W of Ara. A similar comparison
can be done for the axpy and 2D convolution benchmark,
where we achieve 2.45× and 2.37× the energy efficiency
improvement over Ara. Most of the energy efficiency gains
come from the higher area efficiency and the much higher
compute/control ratio. A comparable architecture to Ara is
Hwacha [28], which suffers from similar limitations.

5.2 GPUs

GPUs have completely penetrated the market of general-
purpose computing with their superior capabilities to ac-
celerate dense linear algebra kernels most prominently

found in machine-learning applications. The key idea of
General Purpose Computation on Graphics Processing Unit
(GPGPU) is to oversubscribe the compute units using mul-
tiple, parallel threads that can be dynamically scheduled
by hardware to hide access latencies to memory. We have
estimated energy efficiency of an NVIDIA GPU using a
Tegra Xavier SoC [31] development kit. The board allows for
direct power measurements on the supply rails of both the
GPU and CPU. The Tegra SoC contains a Volta-based [35]
GPU consisting of eight SMs which each in turn consists of
32 double- and 64 single-precision FPUs. Each SM contains
four execution units, each managing eight double-precision
and 16 single-precision FPUs, which share a common reg-
ister file and an instruction cache. Hence such a quadrant
is directly comparable to one Snitch cluster as presented
here. Clock speeds of 1 GHz of Snitch and 1.38 GHz for
the Volta SM are comparable keeping in mind that the SM
has been manufactured in a more advanced technology,
see Table 4. On a high-level comparison, the Snitch system
surpasses the SM in terms of energy efficiency, by over 1.98
on single-precision workloads. This comparison does not
take technology scaling into consideration, which would
further improve energy-efficiency in favor of Snitch.

5.3 Super-scalar CPUs

The Tegra Xavier SoC also offers an eight-core cluster
of NVIDIA’s ARMv8 implementation called Carmel. The
Carmel CPU is a 10-issue, super-scalar CPU including sup-
port for Arm’s SIMD extension NEON. Each core contains
two 128-bit SIMD-FPUs that are fracturable in either two
64-bit, four 32-bit or eight 16-bit units, offering a total
of 8 double-precision flop/cycle, hence comparable to the
presented octa-core Snitch cluster. The processor runs at
a substantially higher clock frequency of 2.27 GHz at the
expense of a much deeper pipeline, which in turn requires
the processor to hide pipeline stalls by exploiting instruction
level parallelism (ILP) in the form of super-scalar execution
and a steep memory hierarchy to mitigate the effects of high
memory latency. The increased hardware cost reduces the
attainable area efficiency to only 1.26 DPGflop/s/mm2. The
losses in area efficiency have a direct influence on the energy
efficiency of the system. Not accounting for technology
scaling, we can show more than 10× improvement in energy
efficiency for FP32 and 15× for FP64.

Recent developments in high-performance chips, such
as Fujitsu’s A64FX [36], clearly demonstrate that energy-
efficiency is becoming the number one design concern. The
new Green500 [37] winner achieves 16.876 DPGflop/s/W
system-level energy-efficiency (including cooling, board and
power supplies). Unfortunately, as we do not have access
to such a system for detailed measurements, we can not
perform accurate direct comparisons.

6 CONCLUSION

We present a general-purpose computing system tuned for
the highest possible energy efficiency on double-precision
floating-point arithmetic. The system offers an implementa-
tion of the RISC-V atomic extension (A) for efficient multi-
core programming and can be targeted with a standard

ZARUBA et al.: AREA AND ENERGY EFFICIENT ARCHITECTURE FOR FLOATING-POINT WORKLOADS 15

RISC-V toolchain. We outperform existing state-of-the-art
systems (Table 4 on energy efficiency by a factor of 2 by
leveraging several ideas.

Tightly Coupled Data Memory (TCDM): Explicit
scratchpad memories (TCDM) instead of hardware man-
aged caches enable deterministic data placement and avoid
suboptimal cache replacement strategies. The TCDM mem-
ory is shared amongst a cluster of cores, making data shar-
ing significantly more energy efficient as no cache coherence
protocol is necessary.

Small and efficient integer core: We aim to maximize
the control to compute ratio by providing a small and agile
integer core that can do single-cycle control flow decisions
and integer arithmetic and combine it with a large FPU.
The FP-SS decouples the integer/control flow from the
floating-point operations and the FP-SS can operate on its
own register file and provides its own floating-point (FP)
LSU.

ISA extensions: We provide two minimal impact ISA
extensions, SSRs and FREP. The first makes it possible to set
up a four-dimensional stream to memory from which the
core can simply read/write using two designated register
names. The FREP extension complements the SSR exten-
sion by further decoupling the issuing of floating-point
instructions to the FP-SS. The integer core pushes RISC-V
instructions into the previously configured loop-buffer and
subsequently issue those instructions to the FPU. This has
two beneficial side-effects: While the FPU loop-buffer feeds
the FPU with instructions, the integer core is free to do
auxiliary tasks, such as orchestrating data movement. The
second positive effect is that it relieves the pressure on the
instruction cache, therefore saving energy.

The system achieves a speed-up of up to 6.45× on data-
oblivious kernels while still being fully programmable and
not overspecializing on one problem domain. The flexi-
bility offered by the small, integer control unit makes it
a versatile architecture and possible to adapt to changing
algorithmic requirements. Furthermore, we have shown that
eight cores per cluster provide a good trade-off between
speed-up and complexity of the interconnect (see Table 2
and Section 4.3.2). A future extension of the proposed SSR
hardware could target improved efficiency for sparse lin-
ear algebra problems. Furthermore, extended benchmarking
and improvements in the compiler infrastructure are excit-
ing future research directions.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement number 732631, project “OPRECOMP”.

REFERENCES

[1] Y. Yao and Z. Lu, “Pursuing Extreme Power Efficiency with PPCC
Guided NoC DVFS,” IEEE Transactions on Computers, 2019.

[2] A. Fuchs and D. Wentzlaff, “The accelerator wall: Limits of chip
specialization,” in 2019 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA). IEEE, 2019, pp. 1–14.

[3] T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright,
“Pushing the limits of accelerator efficiency while retaining pro-
grammability,” in 2016 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA). IEEE, 2016, pp. 27–39.

[4] J. L. Hennessy and D. A. Patterson, Computer architecture: a quanti-
tative approach. Elsevier, 2011.

[5] C. Celio, P.-F. Chiu, B. Nikolic, D. Patterson, and K. Asanovic,
“BOOM v2,” 2017.

[6] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom:
The 3rd generation berkeley out-of-order machine.”

[7] T. Singh, S. Rangarajan, D. John, R. Schreiber, S. Oliver, R. Seahra,
and A. Schaefer, “2.1 zen 2: The amd 7nm energy-efficient high-
performance x86-64 microprocessor core,” in 2020 IEEE Interna-
tional Solid- State Circuits Conference - (ISSCC), 2020, pp. 42–44.

[8] F. Zaruba and L. Benini, “The Cost of Application-Class Process-
ing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz
64-Bit RISC-V Core in 22-nm FDSOI Technology,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, pp. 1–12, 2019.

[9] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold
RISC-V core with DSP extensions for scalable IoT endpoint de-
vices,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 10, pp. 2700–2713, 2017.

[10] M. Cornea, “Intel AVX-512 instructions and their use in the imple-
mentation of math functions,” Intel Corporation, 2015.

[11] V. G. Reddy, “Neon technology introduction,” ARM Corporation,
vol. 4, no. 1, 2008.

[12] R. M. Russell, “The CRAY-1 computer system,” Communications of
the ACM, vol. 21, no. 1, pp. 63–72, 1978.

[13] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu et al., “The
ARM scalable vector extension,” IEEE Micro, vol. 37, no. 2, pp.
26–39, 2017.

[14] M. Cavalcante, F. Schuiki, F. Zaruba, M. Schaffner, and L. Benini,
“Ara: A 1 GHz+ Scalable and Energy-Efficient RISC-V Vector
Processor with Multi-Precision Floating Point Support in 22 nm
FD-SOI,” arXiv preprint arXiv:1906.00478, 2019.

[15] NVIDIA, “Tesla V100 GPU Architecture Whitepa-
per,” August 2017, accessed: September 2019. [On-
line]. Available: https://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf

[16] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting
the nvidia volta gpu architecture via microbenchmarking,” arXiv
preprint arXiv:1804.06826, 2018.

[17] F. Schuiki, F. Zaruba, T. Hoefler, and L. Benini, “Stream Semantic
Registers: A Lightweight RISC-V ISA Extension Achieving Full
Compute Utilization in Single-Issue Cores,” 2019.

[18] O. Goldreich and R. Ostrovsky, “Software protection and simula-
tion on oblivious RAMs,” Journal of the ACM (JACM), vol. 43, no. 3,
pp. 431–473, 1996.

[19] I. Corporation, “Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual,” [Online]. Available: https://www.intel.com/content/
dam/www/public/us/en/documents/manuals/64-ia-32-architectures-
software-developer-instruction-set-reference-manual-325383.pdf .

[20] D. TMS320C28x, “Cpu and instruction set reference-guide (rev.
c),” Texas lnstruments, vol. 5, 2004.

[21] M. B. Taylor, “Basejump STL: systemverilog needs a standard
template library for hardware design,” in Proceedings of the 55th
Annual Design Automation Conference. ACM, 2018, p. 73.

[22] A. Gonzalez, F. Latorre, and G. Magklis, “Processor microarchi-
tecture: An implementation perspective,” Synthesis Lectures on
Computer Architecture, vol. 5, no. 1, pp. 1–116, 2010.

[23] C. Wolf, “RISC-V Formal Verification Framework,” 2019. [Online].
Available: https://github.com/SymbioticEDA/riscv-formal

[24] S. Mach, F. Schuiki, F. Zaruba, and L. Benini, “A 0.80pj/flop,
1.24tflop/sw 8-to-64 bit transprecision floating-point unit for a
64 bit risc-v processor in 22nm fd-soi,” in 2019 IFIP/IEEE 27th
International Conference on Very Large Scale Integration (VLSI-SoC),
Oct 2019, pp. 95–98.

[25] F. Schuiki, M. Schaffner, F. K. Gürkaynak, and L. Benini, “A scal-
able near-memory architecture for training deep neural networks
on large in-memory datasets,” IEEE Transactions on Computers,
vol. 68, no. 4, pp. 484–497, 2018.

[26] RISC-V Vector Task Group, “Risc-v vector extension,” https://
github.com/riscv/riscv-v-spec, 2020.

[27] BSC, “RISC-V Vector Intrinsics,” 2020. [Online].
Available: https://repo.hca.bsc.es/gitlab/rferrer/epi-builtins-
ref/blob/master/epi-builtins-ref.md

[28] D. Dabbelt, C. Schmidt, E. Love, H. Mao, S. Karandikar, and
K. Asanovic, “Vector processors for energy-efficient embedded

16 IEEE TRANSACTIONS ON COMPUTERS, VOL. (VOL), NO. (NO), (MONTH) (YEAR)

systems,” in Proceedings of the Third ACM International Workshop
on Many-core Embedded Systems. ACM, 2016, pp. 10–16.

[29] A. Kurth, S. Riedel, F. Zaruba, T. Hoefler, and L. Benini, “Atuns:
Modular and scalable support for atomic operations in a shared
memory multiprocessor.”

[30] D. Blackman and S. Vigna, “Scrambled linear pseudorandom
number generators,” arXiv preprint arXiv:1805.01407, 2018.

[31] M. Ditty, A. Karandikar, and D. Reed, “Nvidia’s xavier SoC,” in
Hot Chips: A Symposium on High Performance Chips, 2018.

[32] C. Nvidia, “CUBLAS library programming guide,” NVIDIA Cor-
poration. edit, vol. 1, 2007.

[33] P. Charles, “Computelibrary,” https://github.com/ARM-
software/ComputeLibrary, 2020.

[34] Z. Xianyi, W. Qian, and Z. Chothia, “OpenBLAS,” URL: http://
xianyi.github.io/OpenBLAS, p. 88, 2012.

[35] T. NVIDIA, “NVIDIA Tesla V100 GPU Architecture,” 2017.
[36] T. Yoshida, “Fujitsu high performance CPU for the Post-K Com-

puter,” in Hot Chips, vol. 30, 2018.
[37] W.-c. Feng and K. Cameron, “The green500 list: Encouraging

sustainable supercomputing,” Computer, vol. 40, no. 12, pp. 50–55,
2007.

Florian Zaruba received his BSc degree from
TU Wien in 2014 and his MSc from the Swiss
Federal Institute of Technology Zurich in 2017.
He is currently pursuing a PhD degree at the
Integrated Systems Laboratory. His research in-
terests include design of very large scale inte-
gration circuits and high performance computer
architectures.

Fabian Schuiki received the B.Sc. and M.Sc.
degree in electrical engineering from ETH
Zürich, in 2014 and 2016, respectively. He is
currently pursuing a Ph.D. degree with the Digital
Circuits and Systems group of Luca Benini. His
research interests include computer architec-
ture, transprecision computing, as well as near-
and in-memory processing.

Torsten Hoefler is a Professor of Computer Sci-
ence at ETH Zürich, Switzerland. He is also a
key member of the Message Passing Interface
(MPI) Forum where he chairs the “Collective Op-
erations and Topologies” working group. His re-
search interests revolve around the central topic
of “Performance-centric System Design” and in-
clude scalable networks, parallel programming
techniques, and performance modeling. Torsten
won best paper awards at the ACM/IEEE Su-
percomputing Conference SC10, SC13, SC14,

EuroMPI’13, HPDC’15, HPDC’16, IPDPS’15, and other conferences.
He published numerous peer-reviewed scientific conference and journal
articles and authored chapters of the MPI-2.2 and MPI-3.0 standards.
He received the Latsis prize of ETH Zurich as well as an ERC starting
grant in 2015.

Luca Benini holds the chair of digital Circuits
and systems at ETHZ and is Full Professor
at the Universita di Bologna. Dr. Benini’s re-
search interests are in energy-efficient comput-
ing systems design, from embedded to high-
performance. He has published more than 1000
peer-reviewed papers and five books. He is
a Fellow of the ACM and a member of the
Academia Europaea. He is the recipient of the
2016 IEEE CAS Mac Van Valkenburg award.

