Linux Kernel Co-Scheduling For Bulk Synchronous Parallel Applications

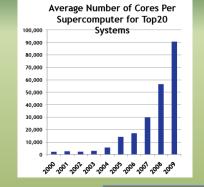
ROSS 2011 Tucson, AZ

Terry Jones

Oak Ridge National Laboratory

ROSS 2011

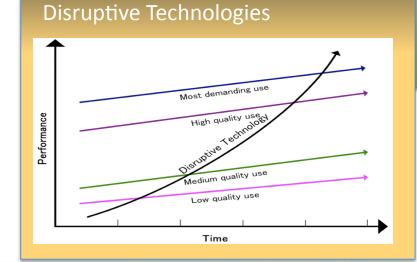
Outline

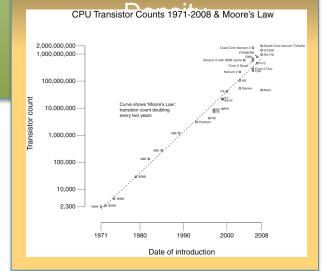

- Motivation
- Approach & Research
 - Design Attributes
 - Achieving Portable Performance
 - Measurements
- Conclusion & Acknowledgements

We're Experiencing an Architectural Renaissance

- Factors To Change
 - Moore's Law -- Number of transistors per IC double every 24 months
 - No Power Headroom -- Clock speed will not increase (and may decrease) because of Power

Increased Core Counts




ROSS 2011

Power α Voltage² * Frequency

Power α Frequency Power α Voltage³

Managed by UT-Battelle for the U.S. Department of Energy

A Key Component of the Colony Project

Adaptive System Software For Improved Resiliency and Performance

ROSS 2011

Objectives

- Provide technology to make portable scalability a reality.
- Remove the prohibitive cost of full POSIX APIs and full-featured operating systems.
- Enable easier leadership-class level scaling for domain scientists through removing key system software barriers.

Challenges

- Computational work often includes large amounts of state which places additional demands on successful work migration schemes.
- For widespread acceptance from the Linux community, the effort to validate and incorporate HPC originated advancements into the Linux kernel must be minimized.

Approach

- Automatic and adaptive load-balancing plus fault tolerance.
- High performance peer-to-peer and overlay infrastructure.
- Address issues with Linux to provide the familiarity and performance needed by domain scientists.

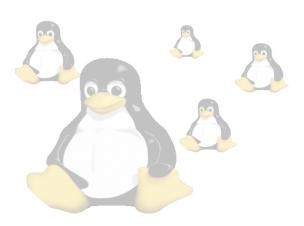
Impact

- Full-featured environments allow for a full range of programming development tools including debuggers, memory tools, and system monitoring tools that depend on separate threads or other POSIX API.
- Automatic load balancing helps correct problems associated with long running dynamic simulations.
- Coordinated scheduling removes the negative impact of OS jitter from full-featured system software.

Motivation – App Complexity

Don't Limit Development Environment

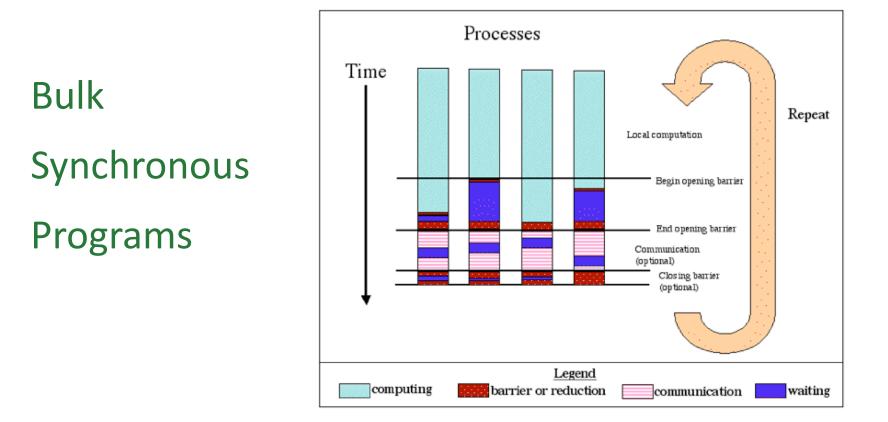
Linux


-> Familiar

- -> Open Source
- -> Support for common system calls
- Support for daemons & threading packages
 -> Debugging strategies

-> Asynchronous strategies

- Support for administrative monitoring
- OS Scalability
 - -> Eliminate OS Scalability Issues Through Parallel Aware Scheduling



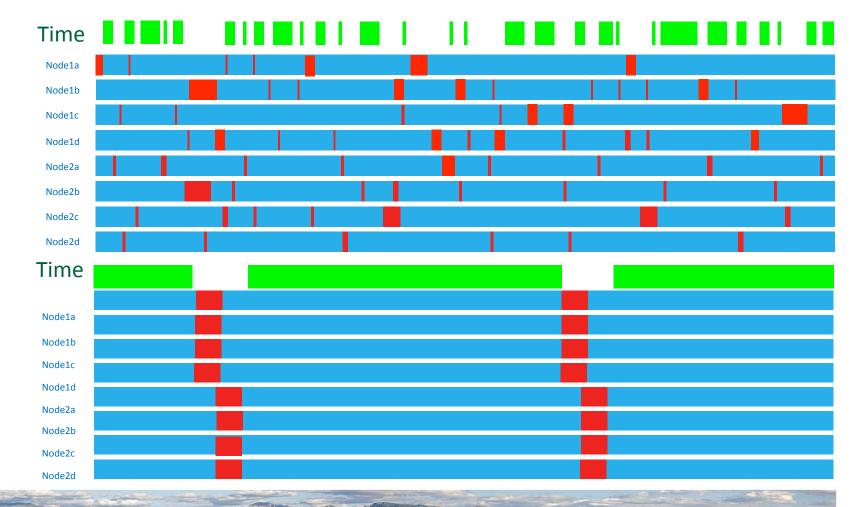
ROSS

2011

The Need For Coordinated Scheduling

The Need For Coordinated Scheduling

- Permit Full Linux Functionality
- Eliminate Problematic OS Noise
- Metaphor: Cars and Coordinated Traffic Lights


What About ...

- Core Specialization
- Minimalist OS
- Will Apps Always Be Bulk Synchronous?
- Yeah, but it's *Linux*

HPC Colony Technology – Coordinated Scheduling

Managed by UT-Battelle for the U.S. Department of Energy

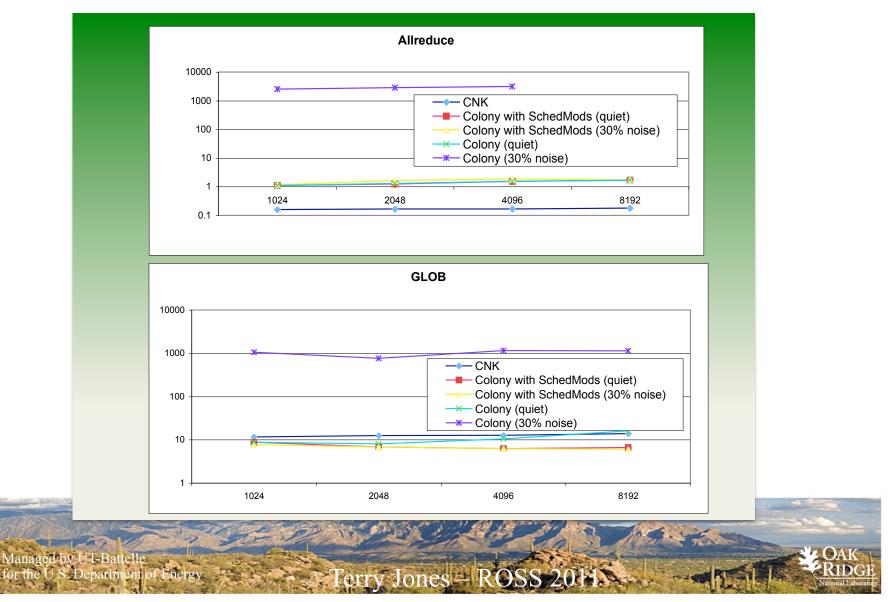
Terry Jones - ROSS 2011

OAK RIDC National Labor

ROSS

2011

Goals



- Portable Performance
- Make OS Noise a non-issue for bulk-synchronous codes
- Permit sysadmin best practices

Proof of Concept – Blue Gene / L

Core Counts (cont.) Scaling with Noise (Noise level @ serial task takes 30% longer)

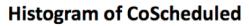
ROSS

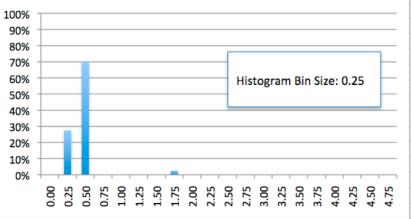
2011

Approach

- Introduces two new process flags & two new tunables
 - total time of epoch
 - percentage to parallel app (percentage of blue from co-schedule figure)
- Dynamically turned on or off with new system call
- Tunables are adjusted through use of a second new system call

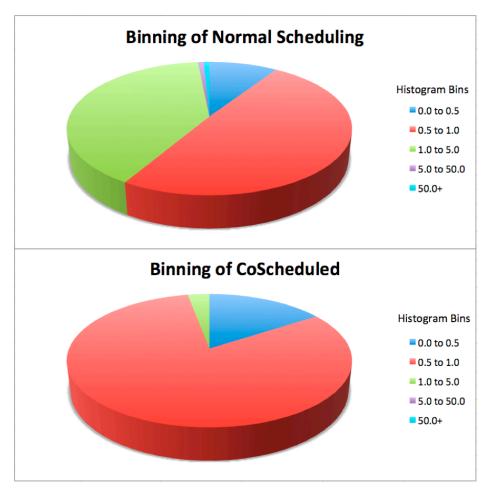
Salient Features


- Utilizes a new clock synchronization scheme
- Uses existing fair round-robin scheduler for both epochs
- Permits needed flexibility for time-out based and/or latency sensitive apps



Results

Histogram of Normal Scheduled 100% 90% 80% 70% Histogram Bin Size: 0.25 60% 50% 40% Off Scale & Not Pictured: 30% one instance of 8.88 one instance of 60.77 (!) 20% 10% 0% 0.00 0.25 0.50 0.75 1.00 1.25 1.25 1.75 2.00 2.75 3.00 2.50 3.50 1.25 2.25 3.25 3.75 8. 50


ROSS 2011

Results

ROSS 2011

...and in conclusion...

For Further Info

- contact: Terry Jones <u>trj@ornl.gov</u>
- http://www.hpc-colony.org
- http://charm.cs.uiuc.edu

Partnerships and Acknowledgements

- Synchronized Clock work done by Terry Jones and Gregory Koenig
- DOE Office of Science major funding provided by FastOS 2
- Colony Team

Thank You Any Questions?

14. For

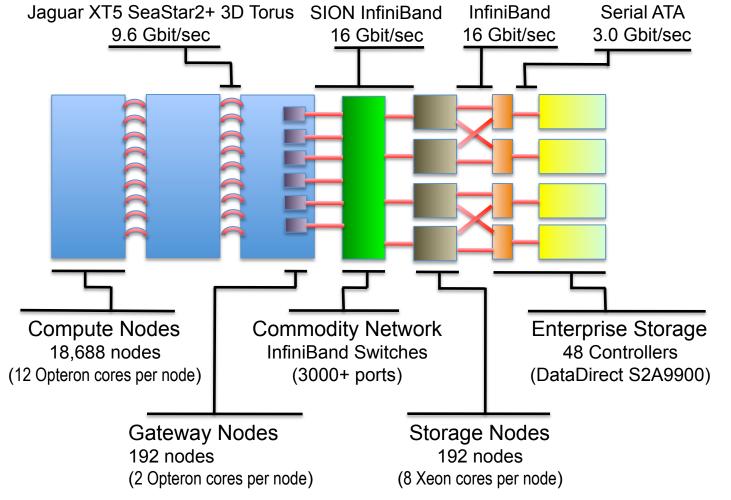
Extra Viewgraphs

Ferry Jones – ROSS 201

Improved Clock Synchronization Algorithms

Sponsor: DOE ASCR FWP ERKJT17

Achievement


Developed a new clock synchronization algorithm. The new algorithm is a high precision design suitable for large leadership-class machines like Jaguar. Unlike most high-precision algorithms which reach their precision in a post-mortem analysis after the application has completed, the new ORNL developed algorithm rapidly provides precise results during runtime.

Relevance

- To the Sponsor;
 - Makes more effective use of OLCF and ALCF systems possible.
- To the Laboratory, Directorate, and Division Missions; and
 - Demonstrates capabilities in critical system software for leadership-class machines.
- To the Computer Science Research Community.
 - High precision global synchronized clock of growing interest to system software needs including parallel analysis tools, file systems, and coordination strategies.
 - Demonstrates techniques for high-precision coupled with guaranteed answer at runtime.

Test Setup (continued)

Jaguar is a Cray XT system consisting of XT4 and XT5 partitions			
Jaguar	XT4	XT5	Total
Nodes per blade	4		
CPUs per node ¹	1	2	
Cores per node	4	12	
Compute nodes ²	7,832	18,688	
AMD Opteron cores	31,328	224,256	255,584
Memory per CPU	8 GB/CPU		
System Memory	~61.2 TB	~292 TB	~353.2 TB
Disk Bandwidth	~44 GB/s	~240 GB/s	~284 GB/s
Disk Space	~750 TB	~10,000 TB	~10,750 TB
Interconnect Bandwidth	~157 TB/s	~374 TB/s	~532 TB/s
Floor Space	1400 feet ²	4400 feet ²	5800 feet ²
Ideal Performance per core ³ (4 FLOPs/cycle times 2.1*10 ⁹ cycles/sec)	8.4 GFLOPS	10.4 GFLOPS	Nations
Overall Ideal Performance	~263.16 TFLOPS	~2.33 PFLOPS	~2.60 PFLOPS

Managed by UT-Battelle for the U.S. Department of Energy

Terry Jones - ROSS 2011