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File Organization Trend of HPC Applications 

 Use of millions of several-MB-sized files 

 Examples of real HPC applications 

 Integrated Microbial Genomes System [Rockville 2009] 

 65 million files 

 Average file size :  < 1KB 

 Nearby Supernova Factory [Cecilia  2009] 

 over 100 million files 

 Max file size : 8MB 

 Statistics on HPC file systems [Shobhit 2008] 

 60% of files : < 1MB 

 80% of files : < 8MB 

 99% of files : < 64MB 
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Design of Current HPC Applications 

 N-N pattern 

 N processes utilize N independent files 
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Goal of This Research 

 N-1 pattern 

 N processes utilize 1 shared file 
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Problem of the N-1 pattern (1/2) 

 Low I/O Performance 
 Benchmark Program : MPI-IO Test 

 File System : Lustre Parallel File System 
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Problem of the N-1 pattern (2/2)  

 File lock contention [Richard 2005] 

 Each process must acquire file lock every stripe block before 
data access for consistency  
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Proposed Mechanism 

 PFA (Parallel File Aggregation) Mechanism 

 provides N-1 pattern APIs based on memory-map 

 reduces I/O contention by aggregating I/Os 

 does not need file lock 

 reduces amount of data by incremental logging feature 
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improves the write bandwidth of the N-1 pattern 
reduces the # of files with the use of the N-1 pattern 



APIs of the PFA Mechanism 

 Data are read and written sequentially through the APIs 
based on memory-map 
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 Write data 
const size_t buf_size = 272,383; 

/* allocate a memory region for write */ 

char* buf 

 = pfa_mmap( “foo.txt”, buf_size, rank,… ); 

 

while ( condition ) { 

 buf[ … ] = …; /* edit data */ 

  

 pfa_append( buf, … ); /* append data */ 

} 

/* free the memory region */ 

pfa_munmap( buf ); 

 Read data 
const size_t buf_size = 272,383; 

/* allocate a memory region for read */ 

char* buf 

 = pfa_mmap( “foo.txt”, buf_size, rank, … ); 

 

while ( condition && ! pfa_eof( buf ) ) { 

 … = buf[ … ]; /* read data */ 

  

 pfa_seek( buf, … ); /* read data */ 

} 

/* free the memory region */ 

pfa_munmap( buf ); 

 



Overview of the PFA mechanism 

 The PFA mechanism works on file system client 

 It does not need to modify file system server 
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Memory-map 

 APIs based on memory-map transfer data from the user 
address space directly 
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I/O Aggregation 

 Data are aggregated into chunk on file system client 
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Incremental Logging Feature - Overview 

 Unmodified data from the previous store are not stored again 
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Incremental Logging Feature 

- Detection of Modified Data 

 Page protection fault is used to detect modified data 
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File System Client 

Direct I/O 

 Direct I/O avoids cache duplication between file system 
cache and chunk of the PFA mechanism 
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Data Layout on Shared File 

 Each chunk is aligned on stripe block 
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Evaluation Environment 

 Evaluated on Lustre Parallel File System 

 Lustre Client 

 128 cores ( = 4 cores * 2 sockets * 16 nodes ) 

 Lustre Server 

 1 MDS (Meta Data Server) on VMWare vSphere 4 

 4 OSS (Object Storage Server ) + 6 OST (Object Storage Target) 
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Client MDS OSS 

CPU Intel Xeon X5550 
2.67GHz, 8cores 

Intel Xeon L5640  
2.26GHz,  4 cores in 12 cores 

Intel Xeon L5640  
2.26GHz, 12 cores 

Memory DDR3 24GB DDR3 16008MB in 48GB DDR3 48GB 

Disk 160GB SATA 6Gbps 7,200 rpm SAS  
500GB x 4 

6Gbps 7,200 rpm SAS  
500GB x 2 

Interconnect Infiniband 4x QDR Infiniband 4x QDR Infiniband 4x QDR 

OS RHEL5(2.6.18-194) RHEL5(2.6.18-164) RHEL5(2.6.18-164) 

Lustre 1.8.4 1.8.3 1.8.3 



MPI-IO Test Benchmark 
 Test Configuration 

1. Write 272,383 bytes for a minute 
2. Read written data 

 Result 
 N-N > N-1 with the PFA > N-1 
 N-N pattern generates 128 files at most … too low 
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Athena Application [Stone 2008] 

 Simulating Rayleigh-Taylor 
instability with 128 processes 

 Total 99584 files in original 

 49792 simulation data files 

 Average file size : 737534 byte 

 with incremental logging 

 Saving 30.8% data 

 49792 checkpoint data files 

 Average file size : 272383 byte 

 without incremental logging 
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Related Work & Comparison 

 MPI-IO [Rajeev 1999] 

 provides N-1 pattern APIs based on file 

 requires copy between the user and the kernel address spaces 

 SIONlib [Frings 2009] 

 converts the N-N pattern into N-1 pattern on the library 

 incurs performance degradation due to the file lock contention 

 PLFS [Bent 2009] 

 provides virtual view of the shared file on the file system server 

 incurs metadata stress due to actually employing the N-N pattern  

 The PFA mechanism 

 provides N-1 pattern APIs based on memory-map 

 works on the file system client 
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Conclusion 

 The N-1 pattern exhibits poor I/O performance 

 Most applications employ the N-N pattern and generate 
millions of small files 

 PFA (Parallel File Aggregation) Mechanism 

 It improves I/O performance of the N-1 pattern 

 providing N-1 pattern APIs based on memory-map 

 reducing I/O contention by aggregating I/Os 

 no file lock 

 reducing amount of data by incremental logging feature 

 The Athena application speeds up 3.8 times than the 
original with reducing the number of files by about 
100,000 files 
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