
Design and Implementation of

Parallel File Aggregation Mechanism

Jun Kato* and Yutaka Ishikawa

The University of Tokyo

* Currently affiliated with Fujitsu Laboratories Limited

Agenda

 File organization trend of HPC applications
 use of millions of small files

 Problem of single shared file approach for reducing the
number of files
 exhibiting low I/O performance through a benchmark program

 PFA (Parallel File Aggregation) Mechanism
 providing single shared file APIs for high I/O performance

 Evaluation result on a real HPC application
 3.8 times faster than the original with reducing the number of

files by about 100,000 files

 Conclusion

 Q & A

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 2

Agenda

 File organization trend of HPC applications
 use of millions of small files

 Problem of single shared file approach for reducing the
number of files
 exhibiting low I/O performance through a benchmark program

 PFA (Parallel File Aggregation) Mechanism
 providing single shared file APIs for high I/O performance

 Evaluation result on a real HPC application
 3.8 times faster than the original with reducing the number of

files by about 100,000 files

 Conclusion

 Q & A

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 3

File Organization Trend of HPC Applications

 Use of millions of several-MB-sized files

 Examples of real HPC applications

 Integrated Microbial Genomes System [Rockville 2009]

 65 million files

 Average file size : < 1KB

 Nearby Supernova Factory [Cecilia 2009]

 over 100 million files

 Max file size : 8MB

 Statistics on HPC file systems [Shobhit 2008]

 60% of files : < 1MB

 80% of files : < 8MB

 99% of files : < 64MB

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 4

Design of Current HPC Applications

 N-N pattern

 N processes utilize N independent files

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 5

Process
C

Process
B

Process
A

Application

File A

File B

File C

Each process accesses
its own independent file

Millions of process utilize
millions of files

on millions of CPU cores

Hard file management
 Heavy metadata workload

Goal of This Research

 N-1 pattern

 N processes utilize 1 shared file

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 6

Process
C

Process
B

Process
A

Application

Shared
File Process

C

Process
B

Process
A

Application

File A

File B

File C

N-N pattern N-1 pattern

Change of
application pattern

Why do current HPC applications not employ the N-1 pattern ?

Employed

Good
Not Employed

Bad

Problem of the N-1 pattern (1/2)

 Low I/O Performance
 Benchmark Program : MPI-IO Test

 File System : Lustre Parallel File System

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 7

0
1000
2000
3000
4000
5000
6000
7000
8000

16 24 32 40 48 56 64
of processes

B
an

dw
id

th
 [

M
B

/
se

c
]

Read

0

100

200

300

400

500

600

8 24 40 56 72 88 104120

of processes

B
an

dw
id

th
 [

M
B

/
se

c
]

Write

N-N pattern
N-1 pattern

Legend

over 3 times lower over 5 times lower

Problem of the N-1 pattern (2/2)

 File lock contention [Richard 2005]

 Each process must acquire file lock every stripe block before
data access for consistency

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 8

Process
A

Process
B

Node

Process
C

Process
D

Node

Application

Stripe Block

Shared
File locked by A locked by D

Wait Wait

Blocked !

Process B and C must wait until the lock is released

Performance degradation

Agenda

 File organization trend of HPC applications
 use of millions of small files

 Problem of single shared file approach for reducing the
number of files
 exhibiting low I/O performance through a benchmark program

 PFA (Parallel File Aggregation) Mechanism
 providing single shared file APIs for high I/O performance

 Evaluation result on a real HPC application
 3.8 times faster than the original with reducing the number of

files by about 100,000 files

 Conclusion

 Q & A

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 9

Proposed Mechanism

 PFA (Parallel File Aggregation) Mechanism

 provides N-1 pattern APIs based on memory-map

 reduces I/O contention by aggregating I/Os

 does not need file lock

 reduces amount of data by incremental logging feature

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 10

improves the write bandwidth of the N-1 pattern
reduces the # of files with the use of the N-1 pattern

APIs of the PFA Mechanism

 Data are read and written sequentially through the APIs
based on memory-map

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 11

 Write data
const size_t buf_size = 272,383;

/* allocate a memory region for write */

char* buf

 = pfa_mmap(“foo.txt”, buf_size, rank,…);

while (condition) {

 buf[…] = …; /* edit data */

 pfa_append(buf, …); /* append data */

}

/* free the memory region */

pfa_munmap(buf);

 Read data
const size_t buf_size = 272,383;

/* allocate a memory region for read */

char* buf

 = pfa_mmap(“foo.txt”, buf_size, rank, …);

while (condition && ! pfa_eof(buf)) {

 … = buf[…]; /* read data */

 pfa_seek(buf, …); /* read data */

}

/* free the memory region */

pfa_munmap(buf);

Overview of the PFA mechanism

 The PFA mechanism works on file system client

 It does not need to modify file system server

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 12

Process
A

Process
B

Node

Application

File System Client

File System Server

Shared File

Chunk

Chunk
A

Chunk

Chunk
B

 APIs based on memory-map

 I/O aggregation on chunk
 Incremental Logging Feature

 Direct I/O

 Stripe aware data layout

User Address Space

Kernel Address Space

Memory-map

 APIs based on memory-map transfer data from the user
address space directly

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 13

Application

Process Process

User Address Space

Kernel Address Space

File System Client

Data Data

Data 1 copy 0 copy

To File System Server

fwrite/MPI_File_write
(MPI-IO [Rajeev 1999])

pfa_append

I/O Aggregation

 Data are aggregated into chunk on file system client

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 14

Application

Process

File System Client

To File System Server

Data

Process

User Address Space

Kernel Address Space

Without Aggregation With Aggregation

Chunk

Data Data

Data Data Data

Data Data Data

1 I/O
request

3 I/O
requests

Incremental Logging Feature - Overview

 Unmodified data from the previous store are not stored again

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 15

Application

File System Client

User Address Space

Kernel Address Space

Process

Data

Chunk

Data Data

Data Data Data

Without Incremental
Logging Feature

With Incremental
Logging Feature

Process

Data

Chunk

Data Data

Data Data

To File System Server

Metadata
2nd data == 1st data

2nd stored data is same
as 1st stored data

De-duplicate data

Incremental Logging Feature

- Detection of Modified Data

 Page protection fault is used to detect modified data

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 16

char* buff
 = pfa_mmap(…);
 ・
 ・
pfa_append(buff, …);
 ・
 ・
 ・
buff[0] = …;
 ・
 ・
 ・
pfa_append(buff, …);

Sample Code On Memory

Page 1 Page 0 Page 2

buff

 Allocating pages for buff

Page 1 Page 0 Page 2

 Storing data
 Turning off the write bit of

the all pages

Page 1 Page 0 Page 2

 Handling page protection
fault on Page 0

 Turning on the write bit of
the Page 0

Page 1 Page 0 Page 2 Storing data only on
modified pages (= Page 0)

Page

Page

Writable Page

Write Protected Page

Modified Data

write

File System Client

Direct I/O

 Direct I/O avoids cache duplication between file system
cache and chunk of the PFA mechanism

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 17

File System Cache

Data Data Data

Chunk

Data Data Data

Chunk Without direct I/O With direct I/O

To File System Server
Chunk acts the same as
the file system cache

File System Cache

Direct I/O bypasses the
file system cache

Data Layout on Shared File

 Each chunk is aligned on stripe block

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 18

Stripe Block

Shared
File

Process
A

Process
B

Node

Process
C

Process
D

Node

Application

Chunk
A 1st

Chunk
B 1st

Chunk
C 1st

Chunk
D 1st

Chunk
A 2nd

Chunk
B 2nd

Each process does not need to acquire file lock

Agenda

 File organization trend of HPC applications
 use of millions of small files

 Problem of single shared file approach for reducing the
number of files
 exhibiting low I/O performance through a benchmark program

 PFA (Parallel File Aggregation) Mechanism
 providing single shared file APIs for high I/O performance

 Evaluation result on a real HPC application
 3.8 times faster than the original with reducing the number of

files by about 100,000 files

 Conclusion

 Q & A

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 19

Evaluation Environment

 Evaluated on Lustre Parallel File System

 Lustre Client

 128 cores (= 4 cores * 2 sockets * 16 nodes)

 Lustre Server

 1 MDS (Meta Data Server) on VMWare vSphere 4

 4 OSS (Object Storage Server) + 6 OST (Object Storage Target)

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 20

Client MDS OSS

CPU Intel Xeon X5550
2.67GHz, 8cores

Intel Xeon L5640
2.26GHz, 4 cores in 12 cores

Intel Xeon L5640
2.26GHz, 12 cores

Memory DDR3 24GB DDR3 16008MB in 48GB DDR3 48GB

Disk 160GB SATA 6Gbps 7,200 rpm SAS
500GB x 4

6Gbps 7,200 rpm SAS
500GB x 2

Interconnect Infiniband 4x QDR Infiniband 4x QDR Infiniband 4x QDR

OS RHEL5(2.6.18-194) RHEL5(2.6.18-164) RHEL5(2.6.18-164)

Lustre 1.8.4 1.8.3 1.8.3

MPI-IO Test Benchmark
 Test Configuration

1. Write 272,383 bytes for a minute
2. Read written data

 Result
 N-N > N-1 with the PFA > N-1
 N-N pattern generates 128 files at most … too low

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 21

N-N pattern
N-1 pattern

Legend

N-1 pattern
with the PFA

0
1000
2000
3000
4000
5000
6000
7000
8000

16 24 32 40 48 56 64
of processes

B
an

dw
id

th
 [

M
B

/
se

c
]

Read

Over
2 times

of processes

0

100

200

300

400

500

600

8 24 40 56 72 88 10
4

12
0

B
an

dw
id

th
 [

M
B

/
se

c
]

Write

Over
5 times

Athena Application [Stone 2008]

 Simulating Rayleigh-Taylor
instability with 128 processes

 Total 99584 files in original

 49792 simulation data files

 Average file size : 737534 byte

 with incremental logging

 Saving 30.8% data

 49792 checkpoint data files

 Average file size : 272383 byte

 without incremental logging

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 22

0

50

100

150

200

250

300

350

400

450

1 2 4 8 16 32 64 12
8

Stripe Size [MB]

E
la

ps
e
d

T
im

e
 [

se
c
]

Original
99584 files

Without I/O
Limit Value

With the PFA
2 files

Speeding up 3.8 times faster than
the original in I/O part

Good

Related Work & Comparison

 MPI-IO [Rajeev 1999]

 provides N-1 pattern APIs based on file

 requires copy between the user and the kernel address spaces

 SIONlib [Frings 2009]

 converts the N-N pattern into N-1 pattern on the library

 incurs performance degradation due to the file lock contention

 PLFS [Bent 2009]

 provides virtual view of the shared file on the file system server

 incurs metadata stress due to actually employing the N-N pattern

 The PFA mechanism

 provides N-1 pattern APIs based on memory-map

 works on the file system client

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 23

Conclusion

 The N-1 pattern exhibits poor I/O performance

 Most applications employ the N-N pattern and generate
millions of small files

 PFA (Parallel File Aggregation) Mechanism

 It improves I/O performance of the N-1 pattern

 providing N-1 pattern APIs based on memory-map

 reducing I/O contention by aggregating I/Os

 no file lock

 reducing amount of data by incremental logging feature

 The Athena application speeds up 3.8 times than the
original with reducing the number of files by about
100,000 files

5/31 International Workshop on Runtime and Operating Systems for Supercomputers 2011 24

