
The University of North Carolina at Chapel Hill

Scheduling Task Parallelism"
on Multi-Socket Multicore Systems"

Stephen Olivier, UNC Chapel Hill
Allan Porterfield, RENCI
Kyle Wheeler, Sandia National Labs
Jan Prins, UNC Chapel Hill

The University of North Carolina at Chapel Hill

Outline"

Introduction and Motivation

Scheduling Strategies

Evaluation

Closing Remarks

The University of North Carolina at Chapel Hill

Outline"

Introduction and Motivation

Scheduling Strategies

Evaluation

Closing Remarks

4The University of North Carolina at Chapel Hill

Task Parallel Programming in a Nutshell

•  A task consists of executable code and associated data
context, with some bookkeeping metadata for scheduling
and synchronization.

•  Tasks are significantly more lightweight than threads.

•  Dynamically generated and terminated at run time

•  Scheduled onto threads for execution

•  Used in Cilk, TBB, X10, Chapel, and other languages

•  Our work is on the recent tasking constructs in OpenMP 3.0.

5The University of North Carolina at Chapel Hill

Simple Task Parallel OpenMP Program: Fibonacci

int fib(int n)!
{!
 int x, y;!
 if (n < 2) return n;!

 #pragma omp task!
 x = fib(n - 1);!
 #pragma omp task!
 y = fib(n - 2);!

 #pragma omp taskwait!

 return x + y;!
}!

fib(10)

fib(9) fib(8)

fib(8) fib(7)

6The University of North Carolina at Chapel Hill

Useful Applications

•  Recursive algorithms

•  E.g. Mergesort

•  List and tree traversal

•  Irregular computations

• E.g., Adaptive Fast Multipole

•  Parallelization of while loops

•  Situations where programmers might otherwise write a
difficult-to-debug low-level task pool implementation in
pthreads

cilksort

cilksort cilksort cilksort cilksort

cilkmerge

cilkmerge cilkmerge

cilkmerge

cilkmerge cilkmerge

cilkmerge

cilkmerge

cilkmerge cilkmerge

cilkmerge

cilkmerge cilkmerge

7The University of North Carolina at Chapel Hill

Goals for Task Parallelism Support

•  Programmability

•  Expressiveness for applications

•  Ease of use

• Performance & Scalability

•  Lack thereof is a serious barrier to adoption

•  Must improve software run time systems

8The University of North Carolina at Chapel Hill

Issues in Task Scheduling

•  Load Imbalance

•  Uneven distribution of tasks among threads

•  Overhead costs

•  Time spent creating, scheduling, synchronizing, and load
balancing tasks, rather than doing the actual computational work

•  Locality

•  Task execution time depends on the time required to access data
used by the task

9The University of North Carolina at Chapel Hill

 The Current Hardware Environment

•  Shared Memory is not a free lunch.

• Data can be accessed without explicitly programmed messages
as in MPI, but not always at equal cost.

•  However, OpenMP has traditionally been agnostic toward
affinity of data and computation.

•  Most vendors have (often non-portable) extensions for thread
layout and binding.

•  First-touch traditionally used to distribute data across memories
on many systems.

10The University of North Carolina at Chapel Hill

Example UMA System

N
cores

N
cores

Mem

$$

•  Incarnations include Intel server configurations prior to
Nehalem and the Sun Niagara systems

•  Shared bus to memory

11The University of North Carolina at Chapel Hill

Example Target NUMA System

N
cores

N
cores

N
cores

N
cores

Mem

Mem

Mem

Mem

$

$

$

$

•  Incarnations include Intel Nehalem/Westmere processors
using QPI and AMD Opterons using HyperTransport.

•  Remote memory accesses are typically higher latency than
local accesses, and contention may exacerbate this.

The University of North Carolina at Chapel Hill

Outline"

Introduction and Motivation

Scheduling Strategies

Evaluation

Closing Remarks

13The University of North Carolina at Chapel Hill

Work Stealing

•  Studied and implemented in Cilk by Blumofe et al. at MIT

•  Now used in many task-parallel run time implementations

•  Allows dynamic load balancing with low critical path
overheads since idle threads steal work from busy threads

•  Tasks are enqueued and dequeued LIFO and stolen FIFO
for exploitation of local caches

•  Challenges

•  Not well suited to shared caches now common in multicore chips

•  Expensive off-chip steals in NUMA systems

14The University of North Carolina at Chapel Hill

PDFS (Parallel Depth-First Schedule)

•  Studied by Blelloch et al. at CMU

•  Basic idea: Schedule tasks in an order close to serial order

•  If sequential execution has good cache locality, PDFS
should as well.

•  Implemented most easily as a shared LIFO queue

•  Shown to make good use of shared caches

•  Challenges

•  Contention for the shared queue

•  Long queue access times across chips in NUMA systems

15The University of North Carolina at Chapel Hill

Our Hierarchical Scheduler

•  Basic idea: Combine benefits of work stealing and PDFS
for multi-socket multicore NUMA systems

•  Intra-chip shared LIFO queue to exploit shared L3 cache
and provide natural load balancing among local cores

•  FIFO work stealing between chips for further low overhead
load balancing while maintaining L3 cache locality

•  Only one thief thread per chip performs work stealing when the
on-chip queue is empty

•  Thief thread steals enough tasks, if available, for all cores sharing
the on-chip queue

16The University of North Carolina at Chapel Hill

Implementation

•  We implemented our scheduler, as well as other
schedulers (e.g., work stealing, centralized queue), in
extensions to Sandia’s Qthreads multithreading library.

•  We use the ROSE source-to-source compiler to accept
OpenMP programs and generate transformed code with
XOMP outlined functions for OpenMP directives and run
time calls.

•  Our Qthreads extensions implement the XOMP functions.

•  ROSE-transformed application programs are compiled and
executed with the Qthreads library.

The University of North Carolina at Chapel Hill

Outline"

Introduction and Motivation

Scheduling Strategies

Evaluation

Closing Remarks

18The University of North Carolina at Chapel Hill

Evaluation Setup

•  Hardware: Shared memory NUMA system

•  Four 8-core Intel x7550 chips fully connected by QPI

•  Compiler and Run time systems: ICC, GCC, Qthreads

•  Five Qthreads implementations

•  Q: Per-core FIFO queues with round robin task placement

•  L: Per-core LIFO queues with round robin task placement

•  CQ: Centralized queue

•  WS: Per-core LIFO queues with FIFO work stealing

•  MTS: Per-chip LIFO queues with FIFO work stealing

19The University of North Carolina at Chapel Hill

Evaluation Programs

•  From the Barcelona OpenMP Tasks Suite (BOTS)

•  Described in ICPP ‘09 paper by Duran et al.

•  Available for download online

•  Several of the programs have cut-off thresholds

•  No further tasks created beyond a certain depth in the
computation tree

20The University of North Carolina at Chapel Hill

Health Simulation Performance

21The University of North Carolina at Chapel Hill

Health Simulation Performance

Stock Qthreads scheduler
(per-core FIFO queues)

22The University of North Carolina at Chapel Hill

Health Simulation Performance

Per-core LIFO queues

23The University of North Carolina at Chapel Hill

Health Simulation Performance

Per-core LIFO queues with
FIFO work stealing

24The University of North Carolina at Chapel Hill

Health Simulation Performance

Per-chip LIFO queues with
FIFO work stealing

25The University of North Carolina at Chapel Hill

Health Simulation Performance

26The University of North Carolina at Chapel Hill

Sort Benchmark

27The University of North Carolina at Chapel Hill

NQueens Problem

28The University of North Carolina at Chapel Hill

Fibonacci

29The University of North Carolina at Chapel Hill

Strassen Multiply

30The University of North Carolina at Chapel Hill

Protein Alignment

Single task startup For loop startup

31The University of North Carolina at Chapel Hill

Sparse LU Decomposition

Single task startup For loop startup

32The University of North Carolina at Chapel Hill

Per-Core Work Stealing vs. Hierarchical Scheduling

•  Per-core work stealing exhibits lower variability in
performance on most benchmarks

•  Both per-core work stealing and hierarchical scheduling
Qthreads implementations had smaller standard deviations
than ICC on almost all benchmarks

Standard deviation as a percent of the fastest time

33The University of North Carolina at Chapel Hill

Per-Core Work Stealing vs. Hierarchical Scheduling

•  Hierarchical scheduling benefits

•  Significantly fewer remote steals observed on almost all
programs

34The University of North Carolina at Chapel Hill

Per-Core Work Stealing vs. Hierarchical Scheduling

•  Hierarchical scheduling benefits

•  Lower L3 misses, QPI traffic, and fewer memory accesses as
measured by HW performance counters on health, sort

Health

Sort

35The University of North Carolina at Chapel Hill

Stealing Multiple Tasks

The University of North Carolina at Chapel Hill

Outline"

Introduction and Motivation

Scheduling Strategies

Evaluation

Closing Remarks

37The University of North Carolina at Chapel Hill

Looking Ahead

•  Our prototype Qthreads run time is competitive with
and on some applications outperforms ICC and GCC.

•  Implementing non-blocking task queues could further
improve performance.

•  Hierarchical scheduling shows potential for scheduling
on hierarchical shared memory architectures.

•  System complexity is likely to increase rather than decrease
with hardware generations.

The University of North Carolina at Chapel Hill

Thanks."

• Stephen Olivier, UNC Chapel Hill

• Allan Porterfield, RENCI

• Kyle Wheeler, Sandia National Labs

• Jan Prins, UNC Chapel Hill

