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Task Parallel Programming in a Nutshell

•  A task consists of executable code and associated data 
context, with some bookkeeping metadata for scheduling 
and synchronization.

•  Tasks are significantly more lightweight than threads.

•  Dynamically generated and terminated at run time

•  Scheduled onto threads for execution

•  Used in Cilk, TBB, X10, Chapel, and other languages

•  Our work is on the recent tasking constructs in OpenMP 3.0.
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Simple Task Parallel OpenMP Program: Fibonacci

int fib(int n)!
{!
   int x, y;!
   if (n < 2) return n;!

   #pragma omp task!
      x = fib(n - 1);!
   #pragma omp task!
      y = fib(n - 2);!

   #pragma omp taskwait!

   return x + y;!
}!

fib(10)

fib(9) fib(8)

fib(8) fib(7)
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Useful Applications

•  Recursive algorithms

•  E.g. Mergesort

•  List and tree traversal

•  Irregular computations

• E.g., Adaptive Fast Multipole

•  Parallelization of while loops

•  Situations where programmers might otherwise write a 
difficult-to-debug low-level task pool implementation in 
pthreads

cilksort 

cilksort cilksort cilksort cilksort 

cilkmerge 

cilkmerge cilkmerge 

cilkmerge 

cilkmerge cilkmerge 

cilkmerge 

cilkmerge 

cilkmerge cilkmerge 

cilkmerge 

cilkmerge cilkmerge 
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Goals for Task Parallelism Support

•  Programmability

•  Expressiveness for applications

•  Ease of use

• Performance & Scalability

•  Lack thereof is a serious barrier to adoption

•  Must improve software run time systems
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Issues in Task Scheduling

•  Load Imbalance

•  Uneven distribution of tasks among threads

•  Overhead costs

•  Time spent creating, scheduling, synchronizing, and load 
balancing tasks, rather than doing the actual computational work

•  Locality

•  Task execution time depends on the time required to access data 
used by the task
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 The Current Hardware Environment

•  Shared Memory is not a free lunch.

• Data can be accessed without explicitly programmed messages 
as in MPI, but not always at equal cost.

•  However, OpenMP has traditionally been agnostic toward 
affinity of data and computation.

•  Most vendors have (often non-portable) extensions for thread 
layout and binding.  

•  First-touch traditionally used to distribute data across memories 
on many systems.
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Example UMA System

N 
cores

N 
cores

Mem

$$

•  Incarnations include Intel server configurations prior to 
Nehalem and the Sun Niagara systems

•  Shared bus to memory
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Example Target NUMA System

N 
cores

N 
cores

N 
cores

N 
cores

Mem

Mem

Mem

Mem

$

$

$

$

•  Incarnations include Intel Nehalem/Westmere processors 
using QPI and AMD Opterons using HyperTransport.

•  Remote memory accesses are typically higher latency than 
local accesses, and contention may exacerbate this.
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Work Stealing

•  Studied and implemented in Cilk by Blumofe et al. at MIT

•  Now used in many task-parallel run time implementations

•  Allows dynamic load balancing with low critical path 
overheads since idle threads steal work from busy threads

•  Tasks are enqueued and dequeued LIFO and stolen FIFO 
for exploitation of local caches

•  Challenges

•  Not well suited to shared caches now common in multicore chips

•  Expensive off-chip steals in NUMA systems
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PDFS (Parallel Depth-First Schedule)

•  Studied by Blelloch et al. at CMU

•  Basic idea: Schedule tasks in an order close to serial order

•  If sequential execution has good cache locality, PDFS 
should as well.

•  Implemented most easily as a shared LIFO queue

•  Shown to make good use of shared caches

•  Challenges

•  Contention for the shared queue

•  Long queue access times across chips in NUMA systems
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Our Hierarchical Scheduler

•  Basic idea: Combine benefits of work stealing and PDFS 
for multi-socket multicore NUMA systems

•  Intra-chip shared LIFO queue to exploit shared L3 cache 
and provide natural load balancing among local cores

•  FIFO work stealing between chips for further low overhead 
load balancing while maintaining L3 cache locality

•  Only one thief thread per chip performs work stealing when the 
on-chip queue is empty

•  Thief thread steals enough tasks, if available, for all cores sharing 
the on-chip queue
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Implementation

•  We implemented our scheduler, as well as other 
schedulers (e.g., work stealing, centralized queue), in 
extensions to Sandia’s Qthreads multithreading library.

•  We use the ROSE source-to-source compiler to accept 
OpenMP programs and generate transformed code with 
XOMP outlined functions for OpenMP directives and run 
time calls.

•  Our Qthreads extensions implement the XOMP functions.

•  ROSE-transformed application programs are compiled and 
executed with the Qthreads library.
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Evaluation Setup

•  Hardware: Shared memory NUMA system

•  Four 8-core Intel x7550 chips fully connected by QPI

•  Compiler and Run time systems: ICC, GCC, Qthreads

•  Five Qthreads implementations

•  Q: Per-core FIFO queues with round robin task placement

•  L: Per-core LIFO queues with round robin task placement

•  CQ: Centralized queue

•  WS: Per-core LIFO queues with FIFO work stealing

•  MTS: Per-chip LIFO queues with FIFO work stealing
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Evaluation Programs

•  From the Barcelona OpenMP Tasks Suite (BOTS)

•  Described in ICPP ‘09 paper by Duran et al.

•  Available for download online

•  Several of the programs have cut-off thresholds

•  No further tasks created beyond a certain depth in the 
computation tree
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Health Simulation Performance
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Health Simulation Performance

Stock Qthreads scheduler 
(per-core FIFO queues)
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Health Simulation Performance

Per-core LIFO queues
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Health Simulation Performance

Per-core LIFO queues with 
FIFO work stealing
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Health Simulation Performance

Per-chip LIFO queues with 
FIFO work stealing
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Health Simulation Performance
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Sort Benchmark
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NQueens Problem
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Fibonacci
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Strassen Multiply
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Protein Alignment

Single task startup For loop startup
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Sparse LU Decomposition

Single task startup For loop startup
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Per-Core Work Stealing vs. Hierarchical Scheduling

•  Per-core work stealing exhibits lower variability in 
performance on most benchmarks

•  Both per-core work stealing and hierarchical scheduling 
Qthreads implementations had smaller standard deviations 
than ICC on almost all benchmarks

Standard deviation as a percent of the fastest time
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Per-Core Work Stealing vs. Hierarchical Scheduling

•  Hierarchical scheduling benefits

•  Significantly fewer remote steals observed on almost all 
programs
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Per-Core Work Stealing vs. Hierarchical Scheduling

•  Hierarchical scheduling benefits

•  Lower L3 misses, QPI traffic, and fewer memory accesses as 
measured by HW performance counters on health, sort

Health

Sort
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Stealing Multiple Tasks
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Looking Ahead

•  Our prototype Qthreads run time is competitive with 
and on some applications outperforms ICC and GCC.

•  Implementing non-blocking task queues could further 
improve performance.

•  Hierarchical scheduling shows potential for scheduling 
on hierarchical shared memory architectures.

•  System complexity is likely to increase rather than decrease 
with hardware generations.
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Thanks."

• Stephen Olivier, UNC Chapel Hill

• Allan Porterfield, RENCI

• Kyle Wheeler, Sandia National Labs

• Jan Prins, UNC Chapel Hill


