
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association www.kit.edu

A Light-Weight Virtual Machine Monitor for Blue Gene/P

System Architecture Group

Department of Computer Science

2 May 31, 2011

BG/P Programming Model

Traditional BG/P supercomputer
programming model:

Parallel programming run-time (MPI)
Compute-Node Kernel

CNK: OS for massive parallel applications
Light-weight kernel, “POSIX-ish”
Function-shipping to IO-nodes
Perfect choice for current HPC apps

MPI programming model
Low OS noise
Performance, scalability, customizability

Jan Stoess

Linux

IO
node

CNK CNK

compute
node 0

compute
node 63

…

…

MPI MPI CIOD

System Architecture Group

Department of Computer Science

3 May 31, 2011

Application Scale-Out

Standard Server / Commercial
workloads are scaling out

Big data (hadoop, stream processing,
caching)
Clouds (ec2, vcloud)
Commodity OSes, runtimes, (HW)

Linux OS, Java, Ethernet

CNK not truly compatible:
No full Linux/POSIX compatibility
No compatibility to standardized
networking protocols

Jan Stoess

Linux

IO
node

CNK CNK

compute
node 0

compute
node 63

…

…

MPI MPI CIOD

?

System Architecture Group

Department of Computer Science

4 May 31, 2011

HPC readiness vs. Compatibility

Commodity OSes not designed for
Supercomputers

OS footprint and complexity?
Network protocol overhead
Problem for standard scale-out
software as well

BG could run such workloads – in principle
“cores, memory, interconnect”
Reference HW for future data centers

Can we have
… the HPC strength of CNK and
… the compatibility of commodity OS / NW?

Jan Stoess

…

Linux

IO
node

CNK CNK

compute
node 0

compute
node 63

…

…

MPI MPI CIOD

?

System Architecture Group

Department of Computer Science

5 May 31, 2011

A Light-Weight VMM for Supercomputers

Idea: use a light-weight kernel and a VMM
VMM gives HW-compatibility

Can run Linux in a VM
Can run Linux applications
Can communicate via (virtualized) Ethernet

Light-weight kernel preserves
short path to HW

Run HPC apps “natively”
Direct access to HPC interconnects
Kernel small and customizable
Low kernel footprint

Development path for
converging platforms and workloads

Jan Stoess

VMM

LWK

MPI
MPI

MPI

Guest

VM

System Architecture Group

Department of Computer Science

6 May 31, 2011

Prototype

L4 based prototype
Small, privileged micro-kernel
User-level VMM component

Current focus: VMM layer (this talk)
Virtual BG cores, memory, interconnects
Support for Standard OSes

Future work: Native HPC app support
L4 has native API
Leverage ex. research on

L4 OS frameworks
Native HPC app layers [kitten/palacios]

Jan Stoess

VMM

L4

L4 APP

Linux

2.6

System Architecture Group

Department of Computer Science

7 May 31, 2011

BG Overview and VMM agenda

Compute Nodes
4 PowerPC 450 cores
2 GB physical memory
MMU/TLB
Interrupt controller
Torus and Collective
other HW
(mailboxes, JTAG) not considered

IO nodes:
Not virtualized
Run special Linux for booting

Jan Stoess

rwx

A

A

torus
IO

node
compute
node 63

…

collective

compute
node 0

PPC
450

TLB
BIC

7

Guest VM

VMM

L4

vPPC vTLB vBIC
vTORUS

vCollective

System Architecture Group

Department of Computer Science

8 May 31, 2011

L4 and VMM architecture

L4 offers generic OS abstractions
Threads
Address spaces
Synchronous IPC
IPC-based exception / IRQ handling

VMM is just a user-level program
Receives “VM exit” message from VM
Emulates it and replies with an update message

L4 virtualization enhancements
Empty address spaces
Extended VM/thread state handling
Internal VM TLB handling

Jan Stoess

8

Guest VM

L4

VMM

IPC

IPC

System Architecture Group

Department of Computer Science

9 May 31, 2011

Virtual PowerPC processor

VM runs at user mode,
privileged PPC instructions trap
L4 propagates traps to user-level VMM

kernel-synthesized IPC
VM/thread state included

VMM receives trap IPC
Decodes message (faulting PC)
Emulates instruction (e.g. device IO)
Sends back a reply IPC

Upon reception
Kernel installs new state
Resumes guest

Jan Stoess

9

Guest VM

L4

VMM

IPC

PC
R1

GPRs
State

VM Exit
Exit-IPC

PC+4
R1*

GPRs*
State*

VM Exit
PC
R1

GPRs
State

= mtdcr

VM Entry
Resume-IPC

System Architecture Group

Department of Computer Science

10 May 31, 2011

Guest VM

L4

VMM

Virtual MMU/TLB

PowerPC 450
64-entry TLB
No HW-walked Page Tables

Need to virtualize MMU translation
Two levels
Guest virtual to guest physical
(guest managed)
Guest physical to host physical
(L4/VMM managed)
Compressed into HW TLB

Jan Stoess

vaddr paddr rwx attr sz

A

A

AS

GVHP

GPHP

vaddr paddr rwx attr sz

A

A

AS

GVGP

System Architecture Group

Department of Computer Science

11 May 31, 2011

L4 keeps a per-VM “shadow TLB”
Intercepts guest TLB access
(tlbwe, tlbre, …)

Fills shadow TLB accordingly
Stores GVGP mappings

L4 keeps per-AS memory mappings
Standard L4 memory management
Stores GPHP mappings
User-directed, VMM carries out

TLB miss handling:
If guest virtual TLB miss, deliver to guest
If guest physical TLB miss, deliver to VMM

Guest VM

L4

VMM

Virtual MMU/TLB

Jan Stoess

vaddr paddr rwx attr sz

A

A

AS

vaddr paddr rwx attr sz

A

A

AS

Entry in
shadow
TLB?

Entry in L4 MM
Structures?

tlb
miss

no yes

no

#pf
IPC

System Architecture Group

Department of Computer Science

12 May 31, 2011

PowerPC TLB protection features
User/Kernel bits in TLBs
Address Spaces IDs (256)
Standard Linux behavior:

U/K bits for kernel separation
ASIDs for process separation

Requirements:
Must virtualize protection
Guest code runs at user-level
Must support shared mappings
Compressed, as for translation
Minimize #TLB flushes

Guest VM

L4

VMM

Virtual MMU/TLB Protection

Jan Stoess

VADDR PADDR rwx U/K sz ASID TS

PID MSR EA

System Architecture Group

Department of Computer Science

13 May 31, 2011

Virtualized
L4/VMM

Use U/K bits and ASIDs
VM

All user-level (no U/K)
ASID=1: Guest Kernel
ASID=2: Guest User
ASID=0: Shared Mappings

Analysis
No TLB flush on guest syscall
No TLB flush on VM exit
only on guest process or world
switches

Virtual MMU/TLB Protection

Jan Stoess

VADDR PADDR rwx U/K sz ASID TS

PID MSR EA

Guest VM

L4

VMM

U
ser

K
rnl

TS=1

TS=0

(TS=0)

(TS=1)

System Architecture Group

Department of Computer Science

14 May 31, 2011

Virtual Collective Interconnect

Collective:
Tree Network, 7.8 Gbit/s, <6µs latency
Packet-based, two virtual channels

Packet header
16 * 128-bit FPU words payload
RX/TX FIFOs

Jan Stoess

OS

RX FIFO

COLL.

OS
 COLL.

TX FIFO

RX FIFO
TX FIFO

IO
node

compute
node 63

… compute
node 0

collective

System Architecture Group

Department of Computer Science

15 May 31, 2011

Virtual Collective Interconnect

Collective:
Tree Network, 7.8 Gbit/s, < 6 µs latency
Packet-based, two virtual channels

Packet header
16 * 128-bit FPU words payload
RX/TX FIFOs

Virtualized collective:
TX:

Trap guest channel accesses
Issue on physical collective link

RX:
Copy GPR/FPU into private buffer
Notify guest, then trap vCOLL access

Jan Stoess

VMM VMM
pCOLL pCOLL

IO
node

compute
node 63

… compute
node 0

collective

OS

RX FIFO

vCOLL

OS
 vCOLL

TX FIFO

RX FIFO
TX FIFO

BUF

System Architecture Group

Department of Computer Science

16 May 31, 2011

Virtual Torus Interconnect

Jan Stoess

OS

RCV Buffer

TORUS

OS
 TORUS

rget(0,0)

…
SND Buffer

…

SND Buffer
…
…

RCV Buffer
dput(2,3)

Torus:
3D network, 40.8 Gbit/s, 5 µs latency
Packet-based, 4 RX/TX groups
(Buffer-based) and rDMA
rDMA:

direct access by (user) software
Memory descriptors
put/get interface
(direct-put, remote-get)

torus
IO

node
compute
node 63

… compute
node 0

System Architecture Group

Department of Computer Science

17 May 31, 2011

Virtual Torus Interconnect

Jan Stoess

OS

RCV Buffer

vTORUS

OS
 vTORUS

rget(0,0)

…
SND Buffer

…

SND Buffer
…
…

RCV Buffer
dput(2,3)

VMM VMM
pTORUS pTORUS

GPHP

torus
IO

node
compute
node 63

… compute
node 0

Torus:
3D network, 40.8 Gbit/s, 5 µs latency
Packet-based, 4 RX/TX groups
(Buffer-based) and rDMA
rDMA:

direct access by (user) software
Memory descriptors
put/get interface
(direct-put, remote-get)

Virtualized torus model:
Trap guest descriptor accesses
Translate guest to host physical
Then issue on HW torus

System Architecture Group

Department of Computer Science

18 May 31, 2011

Status & Initial Evaluation

Functionally complete:
Virtual PPC core, MMU
Virtual torus, tree
UP Linux 2.6 guests
Virtualized Ethernet
(within guest)

Initial benchmarks

Ethernet performance
(mapped onto torus)
Collective much worse
still testing/setup problems

Jan Stoess

VMM

L4

Linux

2.6

VMM

L4

Linux

2.6

VMM

L4

Linux

2.6

Linux

2.6

System Architecture Group

Department of Computer Science

19 May 31, 2011

Conclusion

Standard server / commercial workloads are scaling out
Current BG/P programming model makes transition hard
Perfect choice for traditional HPC apps
Lacks compatibility to standard OSes (Linux) or network protocols
(Ethernet)

Idea: Use a light-weight kernel and a VMM
VMM for HW-compatibility, LWK for low footprint
Development path for converging platforms and workloads
L4-based VMM prototype functionally complete
performance from acceptable (torus) to under-optimized (collective)

Things to explore:
Native application support
(MPICH2/L4 and Memcache/L4 for BG/P in preparation)
Performance, Isolation

Jan Stoess

	Slide Number 1
	BG/P Programming Model
	Application Scale-Out
	HPC readiness vs. Compatibility
	A Light-Weight VMM for Supercomputers
	Prototype
	BG Overview and VMM agenda
	L4 and VMM architecture
	Virtual PowerPC processor
	Virtual MMU/TLB
	Virtual MMU/TLB
	Virtual MMU/TLB Protection
	Virtual MMU/TLB Protection
	Virtual Collective Interconnect
	Virtual Collective Interconnect
	Virtual Torus Interconnect
	Virtual Torus Interconnect
	Status & Initial Evaluation
	Conclusion

