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BG/P Programming Model 

Traditional BG/P supercomputer 
programming model: 

Parallel programming run-time (MPI) 
Compute-Node Kernel 
 

CNK: OS for massive parallel applications 
Light-weight kernel, “POSIX-ish” 
Function-shipping to IO-nodes  
Perfect choice for current HPC apps 

MPI programming model 
Low OS noise 
Performance, scalability, customizability 
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Application Scale-Out 

Standard Server / Commercial 
workloads are scaling out 

Big data (hadoop, stream processing, 
caching) 
Clouds (ec2, vcloud) 
Commodity OSes, runtimes, (HW) 

Linux OS, Java, Ethernet 
 

CNK not truly compatible: 
No full Linux/POSIX compatibility 
No compatibility to standardized 
networking protocols 

 
 

 
Jan Stoess 

Linux 

IO 
node 

CNK CNK 

compute 
node 0 

compute 
node 63 

… 

… 

MPI MPI CIOD 

? 



System Architecture Group 

Department of Computer Science 

4 May 31, 2011 

HPC readiness vs. Compatibility  

Commodity OSes not designed for 
Supercomputers 

OS footprint and complexity? 
Network protocol overhead 
Problem for standard scale-out  
software as well 

BG could run such workloads – in principle 
“cores, memory, interconnect” 
Reference HW for future data centers 

Can we have 
… the HPC strength of CNK and 
… the compatibility of commodity OS / NW? 
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A Light-Weight VMM for Supercomputers 

Idea: use a light-weight kernel and a VMM  
VMM gives HW-compatibility 

Can run Linux in a VM 
Can run Linux applications 
Can communicate via (virtualized) Ethernet 

Light-weight kernel preserves  
short path to HW 

Run HPC apps “natively” 
Direct access to HPC interconnects 
Kernel small and customizable 
Low kernel footprint 

Development path for  
converging platforms and workloads 

Jan Stoess 

VMM 

LWK 

MPI 
MPI 

MPI 

 
Guest 

VM 



System Architecture Group 

Department of Computer Science 

6 May 31, 2011 

Prototype 

L4 based prototype 
Small, privileged micro-kernel 
User-level VMM component 

Current focus: VMM layer (this talk) 
Virtual BG cores, memory, interconnects 
Support for Standard OSes 

Future work: Native HPC app support  
L4 has native API 
Leverage ex. research on  

L4 OS frameworks 
Native HPC app layers [kitten/palacios] 
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BG Overview and VMM agenda 

Compute Nodes 
4 PowerPC 450 cores  
2 GB physical memory 
MMU/TLB 
Interrupt controller  
Torus and Collective 
other HW 
(mailboxes, JTAG) not considered 
 

IO nodes: 
Not virtualized 
Run special Linux for booting 
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L4 and VMM architecture 

L4 offers generic OS abstractions 
Threads 
Address spaces 
Synchronous IPC 
IPC-based exception / IRQ handling 

VMM is just a user-level program 
Receives “VM exit” message from VM 
Emulates it and replies with an update message 

L4 virtualization enhancements 
Empty address spaces 
Extended VM/thread state handling  
Internal VM TLB handling 
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Virtual PowerPC processor 

VM runs at user mode,  
privileged PPC instructions trap 
L4 propagates traps to user-level VMM 

kernel-synthesized IPC 
VM/thread state included 

VMM receives trap IPC 
Decodes message (faulting PC) 
Emulates instruction (e.g. device IO) 
Sends back a reply IPC 

Upon reception 
Kernel installs new state 
Resumes guest 
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Guest  VM 
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Guest  VM 
 

L4 

VMM 

Virtual MMU/TLB 

PowerPC 450 
64-entry TLB  
No HW-walked Page Tables 

Need to virtualize MMU translation 
Two levels 
Guest virtual to guest physical  
(guest managed) 
Guest physical to host physical  
(L4/VMM managed) 
Compressed into HW TLB 
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L4 keeps a per-VM “shadow TLB” 
Intercepts guest TLB access 
(tlbwe, tlbre, …) 

Fills shadow TLB accordingly 
Stores GVGP mappings 

L4 keeps per-AS memory mappings 
Standard L4 memory management 
Stores GPHP mappings 
User-directed, VMM carries out 

TLB miss handling: 
If guest virtual TLB miss, deliver to guest 
If guest physical TLB miss, deliver to VMM 

Guest  VM 
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PowerPC TLB protection features 
User/Kernel bits in TLBs 
Address Spaces IDs (256) 
Standard Linux behavior: 

U/K bits for kernel separation 
ASIDs for process separation 

Requirements: 
Must virtualize protection 
Guest code runs at user-level 
Must support shared mappings 
Compressed, as for translation 
Minimize #TLB flushes 
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Virtualized  
L4/VMM  

Use U/K bits and ASIDs 
VM  

All user-level (no U/K) 
ASID=1: Guest Kernel 
ASID=2: Guest User 
ASID=0: Shared Mappings 

Analysis 
No TLB flush on guest syscall 
No TLB flush on VM exit  
only on guest process or world 
switches 
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Virtual Collective Interconnect 

Collective: 
Tree Network, 7.8 Gbit/s, <6µs latency 
Packet-based, two virtual channels 

Packet header  
16 * 128-bit FPU words payload 
RX/TX FIFOs 
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Virtual Collective Interconnect 

Collective: 
Tree Network, 7.8 Gbit/s, < 6 µs latency 
Packet-based, two virtual channels 

Packet header  
16 * 128-bit FPU words payload 
RX/TX FIFOs 

Virtualized collective: 
TX: 

Trap guest channel accesses 
Issue on physical collective link 

RX: 
Copy GPR/FPU into private buffer 
Notify guest, then trap vCOLL access 
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Virtual Torus Interconnect 
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Virtual Torus Interconnect 
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Packet-based, 4 RX/TX groups 
(Buffer-based) and rDMA  
rDMA: 

direct access by (user) software 
Memory descriptors  
put/get interface 
(direct-put, remote-get) 

Virtualized torus model: 
Trap guest descriptor accesses 
Translate guest to host physical 
Then issue on HW torus 
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Status & Initial Evaluation 

Functionally complete: 
Virtual PPC core, MMU 
Virtual torus, tree  
UP Linux 2.6 guests 
Virtualized Ethernet  
(within guest) 

 
Initial benchmarks 

Ethernet performance  
(mapped onto torus) 
Collective much worse  
still testing/setup problems 
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Conclusion 

Standard server / commercial workloads are scaling out 
Current BG/P programming model makes transition hard 
Perfect choice for traditional HPC apps 
Lacks compatibility to standard OSes (Linux) or network protocols 
(Ethernet) 

Idea: Use a light-weight kernel and a VMM  
VMM for HW-compatibility, LWK for low footprint 
Development path for converging platforms and workloads 
L4-based VMM prototype functionally complete 
performance from acceptable (torus) to under-optimized (collective) 

Things to explore:  
Native application support 
(MPICH2/L4 and Memcache/L4 for BG/P in preparation) 
Performance, Isolation 
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