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Solver systems and checkpointing

Parallel Partitioned Solver Systems are being applied to tackle
hard problems in science & engineering, e.g. PHASTA (CFD),
Nek5000 (CFD), NekCEM (CEM)

These applications scale well on massively parallel platforms
(strong scaling on 100,000s of cores)

Traditional I/O doesn’t scale as well, may suffer at large scale

In this talk, we focus on the use of I/O threads for an EM solver
(NekCEM) checkpoint on BG/P and Cray XK6
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I/O software stack of a typical HPC system
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Bursty I/O

Figure: I/O workload in ANL, image courtesy of Rob Ross

Pattern: X steps comp. → checkpoint→ X steps comp. ...

Core assumption: synchronized writes among all processors
(lack of well-supported asynchronous I/O on supercomputers)
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Checkpoint File Structure

(a) Typical File Structure (b) NekCEM File Structure
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Related Work and Our Objective

Related Work

Scalable Checkpoint/Restart, Lawrence Livermore National Lab

ADaptable IO System, Oak Ridge National Lab

I/O Delegate Cache System, Northwestern University

Design Factors

design space; platform dependency; application transparency

Our Objective

Goal: performance at scale

user space, portable, reasonably generic
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Previous work: from coIO to naive rbIO
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from coIO to naive rbIO
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Method 1: Completely split rbIO

dedicated I/O writers

overlap computation
and I/O

lose a small portion of
computing resources

other problems?
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Potential limitations with completely split rbIO

break collective operation optimizations on Blue Gene systems

collective operations on subcomm go through torus not tree

10× slower on torus

Table: The time (in µs) MPI Allreduce spends on BG/P

#nodes Time on Tree Time on Torus Ratio
4096 7.68 55.65 7.24
8192 7.72 61.88 8.01
16384 8.19 67.66 8.26

performance impact on applications: 1 - 2% time spent on
collective now means 10 -20%

can be verified by running application with tree network off on
BG/P
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Method 2: rbIO with I/O daemon threads

global communicator

simple control flow

threading
supercomputers?
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Potential limitations of threading rbIO

BG/P has limited threading capability

default to one, up to three threads per core

does not support automatic thread switching

have to use hardware thread in SMP mode

experiment for demo purpose

load balancing issue for those that fully support threads, e.g.
Cray XK6?
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NekCEM I/O on Blue Gene/P
Blue Gene/P Spec

163,840 cores, 80 TB RAM, 557 teraflops (“Intrepid”@ANL)

GPFS/PVFS, 128 file servers connected to 16 DDN 9900, 10 PB

pset (1 ION to 64 4-core CN), 640 ION to 128 file servers by
10GB/s Myricom switch

4MB block size, read peak 60 GB/s, write peak 47 GB/s

Experiment Setup

3D cylindrical waveguide simulation for different meshes

(grid points, total size) = {(143M, 13GB), (275M, 26 GB),
(550M, 52 GB)}
Weak scaling tests
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Overview of the Blue Gene system
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NekCEM I/O on BG/P: bandwidth
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NekCEM I/O on BG/P: overall time
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NekCEM I/O on Cray XK6

Cray XK6 Spec

299,008 cores (AMD Opteron Interlagos, on Cray Linux
microkernel), 598 TB RAM, 2.63 petaflops (“Jaguar”@ORNL)

Lustre, 192 OSS servers to 96 DDN 9900s (7 RAID-6
(8+2)/OSS), 10 PB

4MB block size, peak 120 GB/s
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Overview of the Cray system

Figure: Architecture diagram of Jaguar@ORNL, image courtesy of Rob
Ross
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NekCEM I/O on Cray: bandwidth
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NekCEM I/O on Cray: overall time
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NekCEM I/O on Cray: profiling compute time
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NekCEM I/O on Cray: Threaded rbIO Timing Analysis
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NekCEM I/O on Cray: Speedup Analysis

Speedupprod =
TcoIO + TcoIO

comp

TtrbIO + T trbIO
comp

=
XcoIO ∗ tcoIO

comp + fcp ∗ tcoIO
comp

XtrbIO ∗ ttrbIO
comp + fcp ∗ ttrbIO

comp

=
XcoIO + fcp

XtrbIO + fcp
∗ 1

1 + δ
,

where X is the number of computation steps that a checkpoint time
equals to, fcp denotes number of computation steps between two
checkpoints, and δ is the overhead of a single step computation with
threaded rbIO compared with nonthreaded I/O (i.e., ttrbIO

comp =
(1 + δ) ∗ tcoIO

comp).

Roughly 50% speedup on 32K procs Jaguar.
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Summary

Application-transparent optimizations (MPI-IO collective) with
good tuning practice can provide decent performance on some
platforms

Application-level optimizations exploit application-specific
information and provide tuning options (nf, ng, I/O thread) and
good performance on most platforms

Data staging (on RAM, RAM disk, SSD) helps ease out pressure
of bursty I/O for file system, trending technique in design of
storage system for Exascale era

What happens on Mira and Blue Waters?
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Questions?
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