

# Better than Native: Using Virtualization to Improve Compute Node Performance

Brian Kocoloski

Jack Lange

**Department of Computer Science** 

University of Pittsburgh







6/29/2012

**Department of Computer Science** 



# Linux is becoming the dominant supercomputing OS ...



Source: http://en.wikipedia.org/wiki/File:Operating\_systems\_used\_on\_top\_500\_supercomputers.svg



# ... but some applications need less overhead

- Lightweight Kernels (LWKs) provide low overhead access to hardware
- Q: How do we provide LWKs to applications that need them, but not to those that don't?
- A: Virtualization
- Applications running in a **virtual environment** can outperform the same applications running **natively**



# **Drawbacks of Linux**

#### Memory Management

- Biggest problem
- Widely recognized as a source of overhead
- OS Noise
  - HPC apps are tightly synchronized
  - Timing is a big deal
- Non-technical



# **Disadvantages of Current Schemes**

- ZeptoOS
  - "Big Memory"
  - Memory is **statically** sized, allocated at **boot** time
  - Compatibility
- Cray's CNL
  - HugeTLBfs
  - Maximum of **2MB-sized memory regions** available



## **Our Approach**





# **Palacios**

- OS-independent embeddable virtual machine monitor
- Strip resources away from host OS
- Low noise, low overhead memory management
- Developed at Northwestern University, University of New Mexico, and University of Pittsburgh
- Open source and freely available







## **Kitten**

- Lightweight Kernel from Sandia National Labs
- Moves resource management as close to application as possible
- Mostly Linux-compatible user environment
- Modern code-base with Linux-like organization
- Open source and freely available





### **System Architecture**

| Management<br>Processes<br>+<br>System Daemons | HPC Application        |                               |
|------------------------------------------------|------------------------|-------------------------------|
|                                                | Lightweight Kernel     |                               |
| Linux derived<br>Compute Node<br>OS            | Palacios VMM           |                               |
|                                                | Linux Module Interface | Palacios Resource<br>Managers |
| Hardware                                       |                        |                               |



### **System Architecture**

| Management<br>Processes<br>+<br>System Daemons | HPC Application        |                               |
|------------------------------------------------|------------------------|-------------------------------|
|                                                | Lightweight Kernel     |                               |
| Linux derived<br>Compute Node<br>OS            | Palacios VMM           |                               |
|                                                | Linux Module Interface | Palacios Resource<br>Managers |
| Hardware                                       |                        |                               |



## **System Architecture**

| Management<br>Processes<br>+<br>System Daemons | HPC Application                    |                               |
|------------------------------------------------|------------------------------------|-------------------------------|
|                                                | Lightweight Kernel                 |                               |
| Linux derived<br>Compute Node<br>OS            | Palacios VMM                       |                               |
|                                                | I<br>1 Linux Module Interface<br>I | Palacios Resource<br>Managers |
| Hardware                                       |                                    |                               |



# **Palacios' Approach**

Memory Management



- Bypass the Linux memory management strategies completely, at run time
- OS Noise
  - Control when the Linux scheduler is able to run
  - Take advantage of tickless host kernel



# **Evaluation**

- Two part evaluation:
  - 1. Microbenchmarks Stream, Selfish
  - 2. Miniapplications HPCCG, pHPCCG
- Evaluation is preliminary
  - 1. Currently limited to a single node running a commodity Fedora 15 kernel
  - 2. Environments are not fully optimized



## Environment

- Two 6-core processors and 16 GB memory
  NUMA design
- Kitten VM was configured with 1 GB of memory
- Stream, HPCCG used OpenMP for shared memory and ran 10 times



#### **Stream**



- Palacios provides ~400 MB/s better memory performance on average than Linux (4.74%)
- 0.34 GB/s lower standard deviation on average



**Department of Computer Science** 

#### **Selfish Detour**



#### Linux



### **Selfish Detour**



#### Virtualized Kitten

Linux



# HPCCG

- Performs the conjugate gradient method to solve a system of linear equations represented by a sparse matrix
- Workload similar to that of many HPC applications
- Separate experiments to represent both CPU and memory intensive workloads



#### **HPCCG – CPU intensive**



Number of Cores

| Average standard deviations |      |
|-----------------------------|------|
| lnx                         | 0.90 |
| lnx-opt                     | 0.16 |
| lwk                         | 0.25 |
| v3vee                       | 0.08 |



## **HPCCG – memory intensive**



Number of Cores

| Average standard deviations |      |
|-----------------------------|------|
| lnx                         | 0.14 |
| lnx-opt                     | 0.30 |
| lwk                         | 0.03 |
| v3vee                       | 0.06 |



# **Future Work**

- Extend to actual Cray hardware with a CNL host
  Show definitively if this approach can work
- Explore the possibility that this approach can be deployed in a cloud setting to provide virtual HPC environments on commodity clouds
  - Previously infeasible, due to the contention, noise, etc.
  - Problems we think can be solved by the same techniques used in this work



# Conclusions

- Palacios is *capable* of providing superior performance to native Linux
- Palacios can provide a low noise environment, even when running on a noisy Linux host
- While results are preliminary, they show that this approach is feasible at small scales



# Acknowledgments

- **Palacios**: http://www.v3vee.org/palacios
- **Kitten**: https://software.sandia.gov/trac/kitten
- **Email**: briankoco@cs.pitt.edu jacklange@cs.pitt.edu







