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Introduction 

• Dedicated co-processor 
 GPGPU 
 Number crunching work load is offloaded to GPGPU 

 Many-core based co-processor (Intel® MIC Architecture) 
 The whole of an application can be executed on the 

many-core 
 Applications running on the many-core may issue  
     file I/O operations 

many-core based co-processor 
(Intel® MIC Architecture) 

Host 
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(Intel® Xeon) 

Local 
Storage 

I/O bus Micro Kernel 

Linux 

File I/O 
Server 

core core core core 

core core core core 

In this work, a file I/O system performed on the many-core 
is designed, implemented and evaluated 
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• Heterogeneous Systems  
 dedicated co-processors and general purpose multi-cores 

 



Machine Environment 
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• Knights Ferry is adopted 
     for implementation and 
     evaluation 

 32 core 
 L2 256KB/core 
 RAM 2GB 

www.brightsideofnews.com - /Data/2011_6_20/Intel-Larrabee 
-Take-Two-Knights-Corner-in-2012-aims-ExaScale-2018/ 
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Intel® MIC Architecture 
(many-core based co-processor) 

• MIC connected to the host processor with PCI-Express 
• Local storage attached to the host processor 
• A kernel currently developing from scratch runs on MIC 
• File I/O server runs on the host 



File I/O performed on the many-core 

HOST 
Processor 

many-core based co-processor 

(A)Offload to the host 
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• Actual file data should be transferred from the storage attached 
      to the host processor 

core core 

core core core core 

core core 

Furthermore,  two mechanisms can be considered for (B) 

I/O bus 

Storage 

• Two mechanisms to perform file I/O operations on the many-
core 
(A) Executing all procedures on the host  
(B) Executing as much procedures as possible on the many-core 



Three Mechanisms for File I/O on MIC 

many-core based co-processor 

(B2)offload to OS function core (B1)on computing core 
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(A) Offloaded to the host processor 
(B) Performed inside the many-core 
  Possibility of cache pollution due to its small cache size  

(B1) Executing on computing core 
(B2) Executing on dedicated core for OS functionality 

 OS 
core 

comp 
core 

comp 
core 

comp 
core 

comp 
core 

comp 
core 

comp 
core 

comp 
core 

[Soares et al., 2010] 
HOST 

Processor 

(A)offload to the host 

I/O bus 

storage 



File I/O Server on the host Linux 

・・・ 

I/O request Q for file 1 

I/O Server 
Thread 1 

I/O request Q for file M 
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I/O request Q for OPEN system call 

I/O Server 
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HOST 

• Each file I/O server thread polls a specified request queue  
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Process 
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MIC 
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read/write 
request 

acquire a result  

open 
request 

acquire a result  

read/write 
request 

acquire a result  

・・・ 
return  

file descriptor 

ack 

ack 
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Design of File Cache on MIC 

file_map_start 

• Read/write system calls on computing core or OS function core 
     are performed through file cache inside the many-core 
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Design of File I/O - Three kinds of read syscalls 
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Design of File I/O - Three kinds of write syscalls 
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At small size, read_comp and read_os are  
better due to utilizing file-cache 

At large size, read_host is better due to  direct I/O 

• In order to ascertain the positive effect of file cache on the many-core, 
    sequential read of a file(total 16MB) is performed 

better 
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At large size, write_host wins over write_comp and 
write_os due to direct I/O 

At small size, write_comp and write_os are better because  

the overhead of transfer small data to the host is large  

• Sequential write of total 16MB 
• sync system call is executed at the end of the evaluation  
    in the case of write_comp and write_os 

better 



Read Benchmark 

sum = 0; 
for(n = 0;  n < DIVISOR;  n++) { 
 read(fd, buf, size); 
 for(i = 0;  i < size/4;  i++) { 
  sum += buf[i]; 
 } 
} 

j = 0; 
sum = 0; 
read(fd, buf, size*DIVISOR); 
for(n = 0;  n < DIVISOR;  n++) { 
 for(i = 0;  i < size/4;  i++) { 
                 sum += buf[j++]; 
 } 
} 

• Total read size is 16MB 
• The total time to run the benchmark is evaluated 

unit data size(64KB) < L2 cache size(256KB) 

iterative once 
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Read Benchmark - Result 
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• The second best: read_comp in the iterative benchmark 
 user buffer data exists on L2 cache when the user code try to access it 

• The best:  read_host in the one time benchmark 
 large bandwidth  

13 



Write Benchmark 
• Total write size is 16MB 
• The total time to run the benchmark is evaluated 

for(n = 0;  n < DIVISOR;  n++) { 
 for(i = 0;  i < size/4;  i++) { 
  buf[i] = n; 
 } 
 
 write(fd, buf, size); 
} 

j = 0; 
for(n = 0;  n < DIVISOR;  n++) { 
 for(i = 0;  i < size/4;  i++) { 
      buf[j++] = n; 
 } 
} 
write(fd, buf, size*DIVISOR); 

unit data size(64KB) < L2 cache size(256KB) 

iterative once 
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Write Benchmark - Result 
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• The second best: write_comp in the iterative benchmark 
 Write system call can be executed efficiently because of user buffer 
     exists on L2 cache 

• The best: write_host in the one time benchmark 
 Large bandwidth 
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Related Work 
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• Shimizu et al. (2010) 
 Remote file I/O for heterogeneous cluster system 
 Direct I/O between I/O node and user buffer in computing node 
 High bandwidth at large data, low bandwidth at small data 

In our work, the bandwidth can maintain high value at small  
data size by introducing file cache on the many-core 

• Soares et al. (2010) 
 FlexSC: Flexible System Call Scheduling with Exception-Less   
                   System Calls 
 Negative effects of executing system calls on user program code 

 Cost of switching the privilege mode 
 Cache pollution caused by the system call 

 
Where the data is utilized in the user code should also be 
considered when discussing file I/O system call’s foot print 



Summary 

17 

• A file I/O system performed on many-core based co-processor  
    connected to the high performance host  

 Three types of file I/O system calls 
 Performed on computing core in the many-core 
 Offloaded to OS function core in the many-core 
 Offloaded to the host 

 
• The bandwidth of file I/O system calls 

 At small data, the system calls performed inside the many-core 
    are better  
 At large data, the system call offloaded to the host wins 
 

• Total execution time of simple read/write benchmarks 
 The bandwidth of file I/O system calls has more significant effect 

rather than the factor that the data exists on the CPU cache.  
 



Thank you 

18 


