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Disclaimer:  
I am a stranger in a strange land 
Thank you for inviting me! 
 
• I’m assuming your field is “Supercomputing” 
• Mine isn’t: I’m a “mainstream” OS researcher 

– Expect considerable naïveté on my part 

• This talk is about the possible intersection and 
interaction of “Supercomputing” and “OS 
research” 

• I will exaggerate for effect.   
– Please don’t take it the wrong way. 
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Traditionally… 

• Supercomputing people built and 
programmed their own machines 

– Wrote their own operating systems and/or 
complained about the existing ones 
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This is, of course,  changing. 



What’s happening in  
general-purpose computing? 



Lots more cores per chip 

• Core counts now follow Moore’s Law 

• Cores will come and go 

– Energy! 

• Diversity of system and processor 
configurations will grow 

• Cache coherence may not  
scale to whole machine 
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Parallelism 

• “End of the free lunch”:  
 cores are not getting faster! 

 
• Higher performance  

  better parallelism 
• New applications  

  parallel applications 
– Mining 
– Recognition 
– Synthesis 
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Cores will be heterogeneous 

• NUMA is the norm today 

• Heterogeneous cores for power reduction 

• Dark silicon, specialized cores 

• Integrated GPUs / Crypto / NPUs etc. 

• Programmable peripherals 
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Communication latency  
really matters 

Example: 8 * quad-core AMD Opteron 
 

PCIe 

PCIe 

0 2 4 6 

1 3 5 7 

RAM 

L3 

CPU 

L1 
L2 

CPU 

L1 
L2 

CPU 

L1 
L2 

CPU 

L1 
L2 

Access cycles normalized to L1 per-hop cost 

L1 cache 2 1 - 

L2 cache 15 7.5 - 

L3 cache 75 37.5 - 

Other L1/L2 130 65 - 

1-hop cache 190 95 60 

2-hop cache 260 130 70 
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Implications 

• Computers are systems of cores and other devices 
which: 

– Are connected by highly complex interconnects 

– Entail significant communication latency between nodes 

– Consist of heterogeneous cores 

– Show unpredictable diversity of system configurations 

– Have dynamic core set membership 

– Provide only limited shared memory or cache coherence 
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The OS model of cooperating processes over a 
shared-memory multithreaded kernel is dead. 



What’s really new? 

• Actually, multiprocessors are nothing new in 
general purpose computing 

• Neither are threads: people have been 
building systems with threads for a long time. 

– Word, databases, games, servers, browsers, etc.  

• Concurrency is old.  We understand it. 

• Parallelism is new. 
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Parallels with Supercomputing 

• Lots of cores 

• Implies parallelism should be used! 

• Message passing predominates 

• Heterogeneous cores (GPUs, CellBE, etc.) 

• Lots of algorithms highly tuned to complex 
interconnects, memory hierarchies, etc. 
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Surely we can use all the cool ideas 
in supercomputing for our new OS! 



Barrelfish: our multikernel 

• ETH Zurich + Microsoft Research 

• Open source (MIT Licence)  

• Published 2009 

• Under active development 

• External user community 

• See www.barrelfish.org.... 
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Non-original ideas in Barrelfish 
Techniques we liked 

• Capabilities for resource management (seL4)‏ 

• Minimize shared state (Tornado, K42)‏ 

• Upcall processor dispatch (Psyche, Sched. Activations)‏ 

• Push policy into user space domains (Exokernel, 
Nemesis)‏ 

• User-space RPC decoupled from IPIs (URPC)‏ 

• Lots of information (Infokernel)‏ 

• Single-threaded non-preemptive kernel per core (K42)‏ 

• Run drivers in their own domains (µkernels, Xen)‏ 

• Specify device registers in a little language (Devil)‏ 
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What things does it run on? 

• PCs: 32-bit and 64-bit x86 architectures 

– Including mixture of the two! 

• Intel SCC 

• Intel MIC platform 

• Various ARM platforms 

• Beehive 

– Experimental Microsoft Research softcore 
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Seamlessly with 
x86 host PCs! 



What things run on it? 

• Many microbenchmarks 

• Webserver: http://www.barrelfish.org/ 

• Databases: SQLite, PostgreSQL, etc. 

• Virtual machine monitor  
– Linux kernel binary 

• Microsoft Office 2010! 
– via Drawbridge 

• Parallel benchmarks:  
– Parsec, SPLASH-2, NAS 
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More on 
this later… 



Rethinking OS Design #1: 
the Multikernel Architecture 
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The Multikernel Architecture 

• Computers are systems of cores and other devices which: 

– Are connected by highly complex interconnects 

– Entail significant communication latency between nodes 

– Consist of heterogeneous cores 

– Show unpredictable diversity of system configurations 

– Have dynamic core set membership 

– Provide only limited shared memory or cache coherence 

 

 Forget about shared memory. 

The OS is a distributed system based on message passing 
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Multikernel principles 

• Share no data between cores 

– All inter-core communication is via explicit messages 

– Each core can have its own implementation 

• OS state partitioned if possible, replicated if not 

– State is accessed as if it were a local replica 

• Invariants enforced by distributed algorithms,  
not locks 

– Many operations become split-phase and 
asynchronous 
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The multikernel model 
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x86 x86 x86 x86 

App 

...vs a monolithic OS on 
multicore 

Interconnect 

kernel 

Main memory 
holds global data structures 
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x86 x86 x86 x86 

Server 

...vs a kernel OS on multicore 

Interconnect 

user mode 

kernel mode 
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App App App App 
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state state state 
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Replication vs sharing  
as the default 

• Replicas used as an optimization in other systems 

Traditional OSes 

Shared state , 
One-big-lock 

Finer-grained 
locking 

Clustered objects 
partitioning 
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Replication vs sharing  
as the default 

• Replicas used as an optimization in other systems 

• In a multikernel, sharing is a local optimisation 

– Shared (locked) replica on closely-coupled cores 

– Only when faster, as decided at runtime 

• Basic model remains split-phase messaging 

Traditional OSes Multikernel 

Shared state , 
One-big-lock 

Finer-grained 
locking 

Clustered objects 
partitioning 

Distributed state, 
Replica maintenance 
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Rethinking OS Design #2: 
the System Knowledge Base 
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System knowledge base 

• Computers are systems of cores and other devices which: 
– Are connected by highly complex interconnects 

– Entail significant communication latency between nodes 

– Consist of heterogeneous cores 

– Show unpredictable diversity of system configurations 

– Have dynamic core set membership 

– Provide only limited shared memory or cache coherence 

 

 Give the OS advanced reasoning techniques to make sense of 
the hardware and workload at runtime. 
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System knowledge base 

• Fundamental operating system service 

• Knowledge-representation framework 
– Database 

– RDF 

– Logic Programming and inference 

– Description Logics 

– Satisfiability Modulo Theories 

– Constraint Satisfaction 

– Optimization 
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What goes in? 

1. Resource discovery  

– E.g. PCI enumeration, ACPI, CPUID… 

2. Online hardware profiling 

– Inter-core all-pairs latency, cache measurements… 

3. Operating system state 

– Locks, process placement, etc. 

4. “Things we just know” 

– Assertions from data sheets, etc. 
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What is it used for? 

• Name service and registry 

• Locking/coordination service 

• Device management 

• Hardware configuration 

• Spatial scheduling and thread placement 

• Optimization for hardware platform 

• Intra-machine routing 

etc. 
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So what happened? 



What happened? 

• Barrelfish achieved some of its goals 
– Showed scalability, adaptability, support for 

heterogeneous machines 

– More work in the pipeline 

• HPC people contacted us because, apparently,  
they wanted a new OS 
– We couldn’t understand why. 

• Much of what we borrowed from 
supercomputing turned out to be of limited use. 
– Why? 
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General-purpose computing  
 

Supercomputing 



The hardware is different. 



These are supercomputers. 
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Artistic case 
design! 

Plenty of 
custom 

hardware! 



Supercomputers  
don’t just look cool 

 

• Supercomputers have cool hardware! 

– Message passing networks 

– In-network collection and reduction primitives 

– Fault-tolerance & partial failure 

– Vector units 

– Etc. 
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This is not a supercomputer. 
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This is not a supercomputer. 
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This is 
Facebook. 



Neither is this. 
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Neither is this. 
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This is actually a 
Microsoft  

40-foot shipping 
container 



Not very glamorous case design. 
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These aren’t 
 supercomputers either 
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The software is different 



This is not a  
supercomputing application. 
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Computationally intensive, 
highly parallelizable 

• Vision and depth-cam 
processing 

• Skeletal body tracking 

• Facial feature and 
gesture recognition 

• Audio beamforming 

• Speech and phoneme 
recognition 

• 3D mesh construction 
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These are also not  
supercomputing applications. 

• Facebook 

• Google 

• Bing 

• Second Life 

• World of Warcraft 

• Twitter 

• Youtube 

• etc. 

22nd June 2012 ROSS Workshop 49 



General-purpose software is… 

• Parallel (increasingly) 
– But complex, dynamic structure! 

• Continuous 
– Long-running services 

• Soft real-time 
– Bounded response time, interactivity 

• Imprecise 
– Sometimes it’s better to be wrong than late 

• Bursty, dynamic, interactive 
– No clear execution cycle, load changes unexpectedly 
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Overall workload is different. 



Workload assumptions 

• General purpose OS target: 

– Many concurrent tasks 

– Diverse performance requirements 

– Unpredictable mix 

– Goal: satisfy SLAs and then optimize power, 
throughput, responsiveness, etc.  

• Supercomputing: 

– Serial jobs.  Complete each one ASAP. 
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Example:  
how long should a thread spin? 

• Operating Systems answer: 

1. It depends 

 (on the workload) 

2. The time taken to context switch 

(If you know nothing about the workload) 

• HPC Answer: 

– As long as it takes for something to happen. 

– Intel OpenMP default spinwait time: 200ms 
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600,000,000 
cycles @ 3GHz! 



Consequences 



1. Hardware optimization 
techniques not directly applicable 

• Good performance  careful use of hardware 
– Caches and memory hierarchy 

– Microarchitecture dependencies 

– Interconnect topology 

• But: 
– Current hardware changes faster than software can 

– Commodity hardware already massively diverse 

– Dynamic sharing changes the problem 
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 Cannot tune OS or any other 
program to hardware at design time 



1. Hardware optimization 
techniques not directly applicable 

• Techniques can be used (and already are), but: 

– Can’t be baked into the software 

– Have to adapt dynamically to current hardware 

• We use SKB to optimize spatial placement, cache 
awareness, etc.  

– Must interact with the OS scheduler 

• Use Scheduler Activations, SKB state, user-level 
threads, etc.  

• Much ongoing research! 
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2. Benchmarks of limited use 

• PARSEC-2, etc. are highly stylized 
– For good reason: 

highlight a range of execution patterns 

– Focus on performance of “simple” codes 

– Very little I/O 

• Don’t stress OS (or even runtime) 

• A general-purpose job mix would have: 
– Concurrent programs w/ diverse requirements 

– Multiple parallel tasks within a program 

– Copious I/O and asynchronicity 
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2. Benchmarks of limited use 

• Still may be useful for  

– Characterizing some execution patterns 

– As synthetic load generators 

– Building blocks for larger workloads? 

 

• Open question: how to benchmark  
general-purpose system software? 

– C.f. Avatar Kinect, etc. 
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3. Co-scheduling doesn’t work 
(yet) 

• Almost nothing benefits from gang scheduling 
– Competitive spinning  backfilling makes more 

efficient use of the machine 

– If one app needs it  schedule with priority 

– More than one app  spatially partition 
 or greedily schedule as best-effort 

– Only of benefit when compute phase ≈ context switch 
time 

• Impact for turnaround time on one job is 
negligible. 
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3. Co-scheduling doesn’t work 
(yet) 

• Some kind of coordinated scheduling might be 
useful: 

– Multiple, parallel database joins 

– SMP virtual machines 

• Needs to understand: 

– I/O operations 

– IPC 

– Etc. 
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HPC folks were worried about 
OS “noise” 

• Two problems:  

1. Message latency 

2. CPU “jitter” 

 

• Message latency:  

– Custom MP hardware is rarely user-safe 

– Map device into user space (VIA, etc.) 

– More recent tricks: abuse SR-IOV! 
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CPU jitter 

• CPU jitter is a spatial scheduling  
non-problem 
– At least in the OS research community 

– If you perform I/O, it’s game over anyway 

– If you don’t, your problem is caches and 
interrupts 

 

• So, if you really want performance isolation: 
– Steer all your interrupts to different cores 

– Place applications to avoid cache crosstalk 
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Q. Why does no general-
purpose OS do this? 

• A. Nobody cares. 

– Plenty of tasks that you to run anyway 

– Applications aren’t sensitive to jitter 

– Most spend lots of time in the kernel 

• However, Barrelfish can isolate applications… 

– Potentially useful for future applications 

– Investigate when Torsten Höfler arrives at ETHZ! 
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4. Messaging hardware  
isn’t useful (yet) 

• HPC-inspired proposals appearing for commodity 
hardware 
– E.g. Intel SCC message buffers 

• Tailored to a single user 
– Can’t be multiplexed efficiently 

– Requires kernel mediation for protection 
 prohibitively expensive to use 

• Tailored to a single application 
– Small, bounded buffers  expensive flow control 

– Hard to context switch 
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4. Messaging hardware  
isn’t useful (yet) 

• Design of useful hardware support for general-
purpose messages is an open research area 
– User-level multiplexing 

– Decoupling notification from delivery 

– Flow control and congestion avoidance 

– API design 

• Many ideas from MPI, Blue Gene, etc. are 
highly relevant 
– But they require considerable changes! 
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Conclusion 

• Supercomputing and OS research: 
Traditionally disjoint areas 

– Things are changing in both areas 

– Each side has ideas useful to the other 

• Problems and assumptions remain very 
different 

– Cross-fertilization of fields is difficult  
(but interesting!) 
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Open questions 

• What ideas from supercomputing might be 
important to the design of general-purpose 
operating systems? 

 

• Are there concepts and challenges from 
general-purpose operating systems which are 
becoming a concern in supercomputing? 
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