Characteristics of Adaptive
Runtime Systems in HPC

Laxmikant (Sanjay) Kale

http://charm.cs.illinois.edu

= PARALLEL (D
}NIVEESJITYg;ILLII\IIOIS ERBAEA)-CHA{IPAIGSN PROGRAMMING LAB m

What runtime are we talking about?

« Java runtime:
— JVM + Java class library
— Implements JAVA API
 MPI runtime:
— Implements MPI standard API
— Mostly mechanisms

« | want to focus on runtimes that are “smart”
— i.e. include strategies in addition mechanisms
— Many mechanisms to enable adaptive strategies

PPL

UIUC

Why?
And what kind of adaptive
runtime system I have 1n

mind?

Let us take a detour

FI1G. 4.-—-Governor and Throttle-Valve.

Source: wikipedia

Governors

« Around 1788 AD, James Watt and
Mathew Boulton solved a proble migss
with their steam engine f;

— They added a cruise control... well,
RPM control

— How to make the motor spin at the = Source: wikipedia
same constant speed

— If it spins faster, the large masses
move outwards

— This moves a throttle valve so less
steam is allowed in to push the prime
mover

T PPL
5 UIUC

Feedback Control Systems Theory

« This was interesting:

— You let the system “misbehave”, and use that
misbehavior to correct it..

— Of course, there is a time-lag here

— Later Maxwell wrote a paper about this, giving
impetus to the area of “control theory”

Measured System

Reference + error input System output
Controller System
Sensor |(

Measured output

Source: wikipedia
][PPL

6 UIUC

Control theory

 The control theory was concerned with
stability, and related issues

— Fixed delay makes for highly analyzable system
with good math demonstration

« We will just take the basic diagram and two
related notions:
— Controllability
— Observability

PPL

UIUC

A modified system diagram

Output variables

System
Observable /
Control Actionable
variables variables
v
controller

Metrics
That we
care about

PPL

UIUC

Source: wikipedia

Archimedes 1s supposed to have said, of the lever:

Give me a place to stand on, and I will move the
Earth

PPL

UIUC

Need to have the lever

« Observability:

— If we can’t observe it, can’t act on it

« Controllability:

— If no appropriate control variable is available, we
can’t control the system
« (bending the definition a bit)
« So: an effective control system needs to
have a rich set of observable and
controllable variables

PPL

it UIUC

A modified system diagram

Syste = Output variables s Metrics
That we care
about

Observable /
Control Actionable
variables l’ variables
controller

These include one or more:
* Objective functions (minimize, maximize, optimize)

e (Constraints: “must be less than”, ..

1

11

PPL

UIUC

Feedback Control Systems in HPC?

« Let us consider two “systems”

— And examine them for opportunities for
feedback control

« A parallel “job”

— A single application running in some partition

« A parallel machine
— Running multiple jobs from a queue

PPL

12 UIUC

I

A Single Job

« System output variables that we care about:

— (Other than the job’s science output)

— Execution time, energy, power, memory usage, ..

— First two are objective functions
— Next two are (typically) constraints
— We will talk about other variables as well, later

« What are the observables?

— Maybe message sizes, rates? Communication
graphs?

« What are the control variables?
— Very few.... Maybe MPI buffer size? bigpages?

13

PPL

UIUC

Control System for a single job?

« Hard to do, mainly because of the paucity of
control variables

« This was a problem with “Autopilot”’, Dan
Reed’s otherwise exemplary research
project
— Sensors, actuators and controllers could be

defined, but the underlying system did not
present opportunities

« We need to “open up” the single job to
expose more controllable knobs

T PPL
14 UIUC

Alternatives

Each job has its own ARTS control system, for
sure

But should this be:

— Specially written for that application?

— A common code base?

— A framework or DSL that includes an ARTS?
This is an open question, | think..

— But it must be capable of interacting with the
machine-level control system

My opinion:

— Common RTS, but specializable for each application

T PPL
15 UIUC

The Whole Parallel Machine

« Consists of nodes, job scheduler, resource
allocator, job queue, ..

« QOutput variables:

— Throughput, Energy bill, energy per unit of work
power, availability, reliability, ..

« Again, very little control

— About the only decision we make is which job to
run next, and which nodes to give to it..

16

PPL

UIUC

The Big Question/s:

How to add more control variables?
How to add more observables?

One method we have explored

« Overdecomposition and processor
independent programming

PPL

UIUC

Object based over-decomposition

* Let the programmer decompose computation
into objects
— Work units, data-units, composites

« Let an intelligent runtime system assign

objects to processors
— RTS can change this assignment during execution

* This empowers the control system
— A large number of observables
— Many control variables created

T PPL
19 UIUC

Object-based over-decomposition: Charm++

* Multiple “indexed collections™ of C++ objects

* Indices can be multi-dimensional and/or sparse

* Programmer expresses communication between objects
— with no reference to processors

System implementation

I

=
./%%‘

User View

20

PPL

UIUC

— |

u

.O D'\w\ DD
8 - = _ @ "

Processor | Frocessor 2
[T N [[T |

Message Queue Message Queue
—

] m
2l UIUC

Note the control points created

« Scheduling (sequencing) of multiple method
invocations waiting in scheduler’s queue

« Observed variables: execution time, object
communication graph (who talks to whom)

« Migration of objects

— System can move them to different processors at
will, because..

« This is already very rich...
— What can we do with that??

T PPL
22 UIUC

Optimizations Enabled/Enhanced by
These New Control Variables

« Communication optimization

« Load balancing

 Meta-balancer

 Heterogeneous Load balancing
 Power/temperature/energy optimizations
« Resilience

« Shrink/Expand sets of nodes

« Application reconfiguration to add control
points

« Adapting to memory capacity

T PPL
23 UIUC

Principle of Persistence

Once the computation is expressed in terms of
its natural (migratable) objects

Computational loads and communication
patterns tend to persist, even in dynamic
computations

So, recent past is a good predictor of near
future

In spite of increase 1n irregularity and
adaptivity, this principle still applies at
exascale, and 1s our main friend.

Measurement-based Load Balancing

Detailed, aggressive Load
Balancing

Refinement Load
Balancing

25 UIUC

Load Balancing Framework

« Charm++ load balancing framework is an
example of “customizable” RTS

« Which strategy to use, and how often to call
it, can be decided for each application
separately

« But if the programmer exposes one more
control point, we can do more:

— Control point: iteration boundary

— User makes a call each iteration saying they can
migrate at that point

— Let us see what we can do: metabalancer

T PPL
26 UIUC

Meta—-Balancer

« Automating load balancing related
decision making

« Monitors the application continuously
— Asynchronous collection of minimum statistics

 |dentifies when to invoke load balancing
for optimal performance based on

— Predicted load behavior and guiding principles
— Performance in recent past

PPL

UIUC

Fractography: Without LB

Utilization Graph (Summary)

300
Time Interval (1s)

UIUC

1

Elapsed time (s)

Fractography: Periodic

Elapsed ume vS LB reriod (Jaguar)

10000
64 cores - = - 512 cores -t
128 cores —+— 1024 cores —-%-—
I 256 cores ---%--
1000 F
A N +-—+__-+____+_————+—+
) L —
! ' - x _____ semmm" X-mmmm==-= ==X
00— — S ——— o—a
F L TTT——— ;— e S =il
' 1terations
10 n 1 n 1 n 1 n 1 1 n >
4 16 64 256 1024 4096
* Frequent load balancing leads to high
overhead and no benefit
* Infrequent load balancing leads to load —

imbalance and results in no gains

UIUC

Meta-Balancer on Fractography

) e 1y

W uH“ Hnmm __[__T___ . “_,,____\ e

T
|HUH||H RN

* Identifies the need for frequent load balancing in the
beginning
* Frequency of load balancing decreases as load becomes

balanced
* Increases overall processor utilization and gives gain of 31%

PPL

UIUC

I

Saving Cooling Energy

Easy: increase A/C setting
— But: some cores may get too hot

Reduce frequency if temperature is high
— Independently for each core or chip
This creates a load imbalance!

Migrate objects away from the slowed-down
processors

— Balance load using an existing strategy
— Strategies take speed of processors into account

Recently implemented in experimental version
— SC 2011 paper

Several new power/energy-related strategies

31

PPL

UIUC

Saving Cooling Energy

« Easy: increase A/C setting
— But: some cores may get too hot
« So, Reduce frequency if temperature is high
— Independently for each core or chip
« But, This creates a load imbalance!
 No prolem, we can handle that:
— Migrate objects away from the slowed-down Procs
— Balance load using an existing strategy
— Strategies take speed of processors into account
« Implemented in experimental version
— SC 2011 paper
— |EEE TC paper
« Several new power/energy-related strategies

— PASA ‘12: Exploiting differential sensitivities of code segments to
freq change

T PPL
32 UIUC

Fault Tolerance in Charm++/AMPI

 Four Approaches:
— Disk-based checkpoint/restart Ships in Charm-++
— In-memory double checkpoint/restart dstibution. foryears
— Proactive object migration
— Message-logging: scalable fault tolerance

« Common Features:
— Leverages object-migration capabilities
— Based on dynamic runtime capabilities

« Several new results in the last year:
— FTXS 2012: scalability of in-mem scheme
— Hiding checkpoint overhead .. with semi-blocking..
— Energy efficiency of FT protocols : best paper SBAC-PAD

PPL

33 UIUC

In-memory double checkpointing

 |s practical for many apps
— Relatively small footprint at checkpoint time

— Also, you can use non-volatile node-local storage
(e.g. FLASH)

T PPL
34 UIUC

Time (ms)

Checkpoint Time — Intrepid(leanMD)

5 I I : T
125000 atoms -—=—
1 million atoms ===
45 t
4 guunnnnnntntt @uannsanns :':i:‘;.
-— e
35
3

4K 8K 16K 32K 64K

#cores

Ha

Restart Time — Intrepid(leanMD)

0.2 | | | |
125000 atoms =——s—
1 million atoms == ®enn
0.15 -
q) -
g 0.1
-
005
0

4K 8K 16K 32K 64K

#cores

Ha

Blocking vs Semi-Blocking

barrier checkpoint done

NODE 1, (o] @ [

> |

NODE 21 (3] © ¥
< >| <+ >
. Thlocki
‘ 5b10cking oeking
barrier local checkpoint remote checkpoint
done done

lT[¢ g PPL

UIUC

Results: Strong Scaling runs of ChaNGa

40 T T 10000 T T
blocking checkpoint ‘no checkpoint =
35 | semi-blocking checkpoint === | Semi_g:ggtmg gﬂggtgg:m]
8000 r
@ 30
3 0
g 257 g 6000 f
2 =
S 20 5
S =
8 3 4000 |
g 15})
® N
[0
S5 10|]
2000 r
5 i
0 0
128 256 512 1024 128 256 512 1024
Number of Cores Number of Cores

The extra control exposed by the underlying
communication layer was critical to attain this result

] m
. | UIUC

App based Creation of Control Points

« A richer set of control points can be generated
if we enlist help from the application
— Or its DSL runtime, or compiler

e The idea is:

— Application exposes some control knobs
— Describes the effects of the knobs

— The RTS observes performance variables, identifies
the knobs that will help the most, and turns them in
the right direction

« Examples: granularity, yield frequencies in
inner loops, CPU-Accelerator balance

T PPL
39 UIUC

Shrink/Expand job

If a job is told to reduce the number of
nodes it is using..

It can do so now by migrating objects..
Same with expanding the set of nodes used
Empowered by migratability

40

PPL

UIUC

Inefficient Utilization within a cluster

Allocate A !
16 Processor (@eflietibd)
system \ /

0 Job A

o __NREEER

O
A
\
OF 8 processors
Job B

;TI[urrent Job Schedulers can lead to low system utilization ! PPL
. | 41 UIUC

Adaptive Job Scheduler

Scheduler can take advantage of the
adaptivity of AMPI and Charm++ jobs

Improve system utilization and response time

Scheduling decisions

— Shrink existing jobs when a new job arrives
— Expand jobs to use all processors when a job finishes

Processor map sent to the job

— Bit vector specifying which processors a job is allowed to
use

« 000TT1100 (use 3 4 and 5)
Handles regular (non-adaptive) jobs

PPL

= UIUC

Two Adaptive Jobs

Albqaads !

16 Processor

system \
] Job A

o -
Q
/ \
&
Min_pe =8

Nl
6‘%\03
Max_pe= 16 -
P

43

PL

UIUC

-

\

Jobl

Per job
RTS

~

v

4 Job2 A
Per job
RTS
NG /

Rich Interaction desirable: currently there 1s very little

Whole Machine RTS

4 Jobk A
Per job
RTS
N /
PPL

44

Whole machine runtime

 Job schedulers and resource allocators:

— Accept more flexible QoS specifications from jobs
« Creating more control variables

— “moldable” specification:
e This job needs between 3000-5000 nodes
« Memory requirements..
« Topology sensitivity, speedup profiles,...

— Malleable:

« this job can be told to shrink/expand after it has started

T PPL
45 UIUC

Whole machine control

Monitor failures, and act in job-specific
ways

Global power constraints:

— Inform, negotiate with and constrain jobs
Thermal management

/0O system and job |I/O interactions

Shrink and Expand jobs as needed to
optimize multiple metrics

46

PPL

UIUC

Conclusions

We need a much richer control system
— For each parallel job
— For parallel machine as a whole

Current status: paucity of control variables

Programming models can help create new
observable and controllable variables
As far as | can see,

— overdecomposition is the main vehicle for this..
— Do you see other ideas?

PPL

<7 UIUC

An upcoming book
Surveys seven major
applications
developed using
Charm++

Parallel Science and Engineering Applications

The Charm++ Approach

= oy
Laxmikant V. Kale
Abhinav Bhatele

UIUC

