
Design and Implementation of

a Customizable Work Stealing Scheduler

Jun Nakashima*1,*2, Sho Nakatani*1, and Kenjiro Taura *1

*1 The University of Tokyo, *2 JSPS Research Fellowship for Young Scientists

Agenda

 Introduction

 Work Stealing Customization Framework

 Evaluation

 Related Work

 Conclusion and Future Work

June 10, 2013 ROSS2013 2

Background

 Productivity is one of the major challenges of
parallel programming frameworks

 Many frameworks and languages proposed

 Many of them provide task parallelism

 Chapel[Cray], X10[IBM], …

 Support many forms of parallelism on top of it

 They need efficient runtime systems

June 10, 2013 ROSS2013

Need efficient runtime systems

3

Work Stealing Scheduler

 A well-known strategy for task parallelism

 Idle workers steal a task from another (victim)

 Typically a victim is chosen randomly

June 10, 2013 ROSS2013

Ready Deque

Worker #0

Ready Deque Ready Deque

Worker #1 Worker #N

Task Task

Task

Thief Victim

・・・

4

Work Stealing Scheduler

 Randomness may cause significant slowdown

 e.g.: A machine with deeper memory hierarchy

 Considering data placement is essential

 Motivation:

 Work stealing scheduler must become clever

 Consider hardware and application knowledge

June 10, 2013 ROSS2013 5

Our Approach

 Ideal solution: A general strategy that can be
used without any effort

 It remains challenging

 Difficult to obtain application knowledge

 Our approach: A framework to customize work
stealing strategy

 Enable programmers to optimize the strategy

 Less ambitious, but more practical

June 10, 2013 ROSS2013 6

Agenda

 Introduction

 Work Stealing Customization Framework

 Evaluation

 Related Work

 Conclusion and Future Work

June 10, 2013 ROSS2013 7

Design Principle

 Purpose of customization

 Steal tasks being aware of hardware/application

 e.g. Shared-cache among workers

 Avoid task steals with negative side-effect

 e.g. Extra cache misses

 Focus on providing functions to customize a
strategy to select a victim of work stealing

June 10, 2013 ROSS2013 8

Implementation

June 10, 2013 ROSS2013

 Implemented by modifying MassiveThreads

 A lightweight thread library by our group

 written in C

 http://code.google.com/p/massivethreads/

9

Overview

June 10, 2013

Ready Deque

Task

Hint

Task

Ready Deque

Task

Hint

Task

Task

Ready Deque

Worker #0

User-defined work
stealing function

Steal a task from the selected victim

・・・

Worker #1 Worker #N

Implement customized
work stealing strategy

ROSS2013

Give scheduling hints to tasks

Collect scheduling hints

10

How to Customize

June 10, 2013 ROSS2013

 Two things to do:

 Modify application to give scheduling hints to tasks

 Implement user-defined work stealing function

11

Example Strategy: Depth-Aware

June 10, 2013 ROSS2013

 Try to steal coarse-grained tasks more carefully

 For divide-and-conquer applications

 Scheduling hint: recursion depth

 As an indicator of task granularity

 Steal tasks which have the smallest recursion
depth

12

Give Scheduling Hints

June 10, 2013 ROSS2013

 Scheduling hint:

 A piece of data associated with a task

 Create a task with initial value

void user_task (int depth,…){

 …

 int newdepth=depth+1;

 create_task_with_hint(user_task,&newdepth,sizeof(int),…);

 …

}

void user_task (…){

 …

 create_task(user_task,…);

 …

}

Create a task with
a scheduling hint

Application maintains recursion depth

13

User-defined Work Stealing Function

June 10, 2013 ROSS2013

 Invoked when a worker is idle

 Most operation is allowed

 Except some functions of runtime system

/* User-defined work stealing function definition */

void depth_aware_steal(int id)

{

 task_handle t_stolen;

 /* Here it tries to steal a task */

 return t_stolen;

}

/* At the beginning of an application */

set_steal_function(depth_aware_steal);

ID of idle worker

Should return the stolen task
Switch work stealing function

14

User-defined Work Stealing Function

June 10, 2013 ROSS2013

 Typical implementation:

1. Select multiple workers as candidates of a victim

2. Read scheduling hints from available tasks

3. Select one worker as a victim

4. Try to steal from the victim

5. Confirm the stolen task

15

Step 1. Select Candidates

June 10, 2013 ROSS2013

 Use a function get_random_workers

 return random non-duplicated worker IDs

 Can be written by hand for better selection

 e.g.: considering memory hierarchy

 …

 int num_of_cadidates = 2;

 int candidates[num_of_cadidates];

 get_random_workers(candidates,num_of_candidates);

 …

16

Step 2. Collect Scheduling Hints

June 10, 2013 ROSS2013

 Use readydeque_peek function:

 Get a copy of scheduling hint of a task to be stolen

 Collect hints from all the candidates

 …

 int depth[num_of_cadidates];

 for (i=0;i<num_of_cadidates;i++){

 size_t size=sizeof(int);

 readydeque_peek(candidates[i],&depth[i],&size);

 /* Set depth to -1 if failed to peek */

 if (size!=sizeof(int))depth[i]=-1;

 }

 …

17

Step 3. Select One Worker as a Victim

June 10, 2013 ROSS2013

 Select a victim based on user-defined strategy

 In depth-aware:

 Worker that has a task with the smallest depth

 …

 int target=0;

 for (i=1;i<num_of_cadidates;i++){

 if (depth[target]<depth[i])target=depth;

 }

 …

18

Step 4. Try to Steal a Task

June 10, 2013 ROSS2013

 readydeque_trysteal function: Try to steal from
selected victim

 Can specify confirm function (used in next step)

 …

 task_handle ret;

 ret = readydeque_trysteal(target,

 depth_aware_confirm, depth[target]);

 …

19

Step 5. Confirm the Stolen Task

June 10, 2013 ROSS2013

 Confirm function:

 Called when a steal has succeeded

 Cancel the steal if the stolen task is undesirable

int depth_aware_confirm(task_handle t,void *param)

{

 int expect_depth=(int)param;

 int *stolen_task_depth=get_hint_ptr(t);

 return (*stolen_task_depth)<=expect_depth;

}

 …

 task_handle ret;

 ret = readydeque_trysteal(target,

 depth_aware_confirm, depth[target]);

 …

20

Agenda

 Introduction

 Work Stealing Customization Framework

 Evaluation

 Related Work

 Conclusion and Future Work

June 10, 2013 ROSS2013 21

Evaluation

June 10, 2013

 Implemented two scheduling strategies

 Depth-aware

 Affinity-aware

 Evaluated on a machine with 32 cores

 Quad-Core Opteron 8354 (2.2 GHz) × 8 Sockets

 Caches

 L1D: 64 KB/Core, L2: 512 KB/Core, L3: 2 MB/Socket

 NUMA Policy :Interleave

ROSS2013 22

Depth-Aware Evaluation Result

June 10, 2013

 App: Matrix Multiply using divide-and-conquer

 Performance gets better if granularity gets larger

 Size: 768x768 SP

 Granularity of Computation

0

20

40

60

80

100

C
o
m

p
u

ta
ti

o
n

R
a
ti

o
(%

) <=64x64x96

64x96x96

96x96x96

96x96x192

96x192x192

ROSS2013

Ratio of larger granularity increases

Depth-Aware Strategy
23

Depth-Aware Evaluation Result

June 10, 2013

 Performance

0

20

40

60

80

100

120

140

160

Random DA2 DA4 DA8 DA16 DA24 DA31 Cutoff

P
e
rf

o
rm

a
n

c
e
 (

G
F
L
O

P
s
)

ROSS2013

18.2% speedup from
random work stealing

Upper-bound of
improvement

Depth-Aware Strategy

24

Affinity-Aware Strategy

June 10, 2013 ROSS2013

 Give a task an affinity as array of integers

 How the task desires to be stolen from each worker

 Try to execute a task with the largest affinity

 Variants:

 Best-effort: Steal even if the affinity is zero

 Strict: Ignore tasks with no affinity

25

Affinity-Aware Strategy

June 10, 2013 ROSS2013

 Benchmark: Repeats STREAM TRIAD

 Parallelized using divide-and-conquer (256 tasks)

 Array size: 8MB * 3 = 24MB

 768KB/core (fits L2 and L3 cache)

 Need to utilize previously cached data

 Give a task an affinity with a worker of last
iteration

 # of candidates=31

26

Affinity-Aware Evaluation Result

June 10, 2013

 Execution time per iteration

ROSS2013

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

Random Best-effort Strict SPMD

E
x
e
c
u

ti
o
n

 t
im

e
 p

e
r

it
e
ra

ti
o
n

 (
s
)

Others

Kernel Tasking overhead
became bottleneck

Due to the reduction of
cache misses

27

Agenda

 Introduction

 Work Stealing Customization Framework

 Evaluation

 Related Work

 Conclusion and Future Work

June 10, 2013 ROSS2013 28

Related Work

 CATS[Chen,2012]

 Online profiling and DAG partitioning

 Qthreads[Oliver,2012]

 Share one task queue among intra-socket cores

 Work-stealing with Configurable Scheduling
Strategies[Wimmer,2013]

 # of tasks to steal, execution order,…

June 10, 2013 ROSS2013 29

What’s new in Our Work?

June 10, 2013

 Our proposed framework is flexible

 Enable programmers to customize a victim
selection strategy directly

 Tradeoff:

 ○ Performance can be much improved

 × Additional effort for customization

ROSS2013 30

Conclusion

June 10, 2013 ROSS2013

 Proposed a framework to customize work
stealing strategy

 Focus on how to decide a victim of work stealing

 Example customization strategies worked as
expected

31

Future Work

June 10, 2013 ROSS2013

 Improve framework design

 Look for good tradeoff between performance and
programmers’ effort

 Further evaluation:

 Unbalanced application

 Adaptive Mesh Refinement

 On distributed memory environment

Thank you for listening!

32

Takeout

June 10, 2013 ROSS2013

 We propose a framework to customize work
stealing strategy

 Give scheduling hints to tasks

 User-defined work stealing function
1. Select candidates of a victim

2. Read scheduling hints

3. Select one worker

4. Try to steal

5. Confirm

 MassiveThreads:
 http://code.google.com/p/massivethreads/

 Contact me:
 nakashima@eidos.ic.i.u-tokyo.ac.jp

33

