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Background 
 

 Productivity is one of the major challenges of 
parallel programming frameworks 

 Many frameworks and languages proposed 

 

 Many of them provide task parallelism 

 Chapel[Cray], X10[IBM], … 

 Support many forms of parallelism on top of it 

 

 They need efficient runtime systems 
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Work Stealing Scheduler 
 

 A well-known strategy for task parallelism 

 Idle workers steal a task from another (victim) 

 Typically a victim is chosen randomly 
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Work Stealing Scheduler 

 

 Randomness may cause significant slowdown 

 

 e.g.: A machine with deeper memory hierarchy 

 Considering data placement is essential 

 

 

 Motivation: 

 Work stealing scheduler must become clever 

 Consider hardware and application knowledge 
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Our Approach 

 

 Ideal solution: A general strategy that can be 
used without any effort 

 It remains challenging 

 Difficult to obtain application knowledge 

 

 Our approach: A framework to customize work 
stealing strategy 

 Enable programmers to optimize the strategy 

 Less ambitious, but more practical 
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Design Principle 

 

 Purpose of customization 

 Steal tasks being aware of hardware/application 

 e.g. Shared-cache among workers 

 

 Avoid task steals with negative side-effect 

 e.g. Extra cache misses 

 

 Focus on providing functions to customize a 
strategy to select a victim of work stealing 
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Implementation 
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 Implemented by modifying MassiveThreads 

 A lightweight thread library by our group 

 written in C 

 http://code.google.com/p/massivethreads/ 
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Overview 
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How to Customize 
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 Two things to do: 

 

 Modify application to give scheduling hints to tasks 

 

 Implement user-defined work stealing function 
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Example Strategy: Depth-Aware 
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 Try to steal coarse-grained tasks more carefully 

 For divide-and-conquer applications 

 

 Scheduling hint: recursion depth 

 As an indicator of task granularity 

 

 Steal tasks which have the smallest recursion 
depth 
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Give Scheduling Hints 
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 Scheduling hint: 

 A piece of data associated with a task 

 Create a task with initial value 

void user_task (int depth,…){ 

  … 

  int newdepth=depth+1; 

  create_task_with_hint(user_task,&newdepth,sizeof(int),…); 

  … 

} 

void user_task (…){ 

  … 

  create_task(user_task,…); 

  … 

} 

Create a task with 
a scheduling hint 

Application maintains recursion depth 
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User-defined Work Stealing Function 
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 Invoked when a worker is idle 
 

 Most operation is allowed 

 Except some functions of runtime system 

/* User-defined work stealing function definition */ 

void depth_aware_steal(int id) 

{ 

  task_handle t_stolen; 

  /* Here it tries to steal a task */ 

  return t_stolen; 

} 

 

/* At the beginning of an application */ 

set_steal_function(depth_aware_steal); 

ID of idle worker 

Should return the stolen task 
Switch work stealing function 

14 



User-defined Work Stealing Function 
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 Typical implementation: 

1. Select multiple workers as candidates of a victim 

2. Read scheduling hints from available tasks 

3. Select one worker as a victim 

4. Try to steal from the victim 

5. Confirm the stolen task 
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Step 1. Select Candidates 
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 Use a function get_random_workers 

 return random non-duplicated worker IDs 

 

 

 

 

 Can be written by hand for better selection 

 e.g.: considering memory hierarchy 

 

  … 

  int num_of_cadidates = 2; 

  int candidates[num_of_cadidates]; 

  get_random_workers(candidates,num_of_candidates); 

  … 
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Step 2. Collect Scheduling Hints 
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 Use readydeque_peek function: 

 Get a copy of scheduling hint of a task to be stolen 

 Collect hints from all the candidates 

  … 

  int depth[num_of_cadidates]; 

  for (i=0;i<num_of_cadidates;i++){ 

    size_t size=sizeof(int); 

    readydeque_peek(candidates[i],&depth[i],&size); 

    /* Set depth to -1 if failed to peek */ 

    if (size!=sizeof(int))depth[i]=-1; 

  } 

  … 
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Step 3. Select One Worker as a Victim 

June 10, 2013 ROSS2013 

 

 Select a victim based on user-defined strategy 

 

 In depth-aware: 

 Worker that has a task with the smallest depth 

 

  … 

  int target=0; 

  for (i=1;i<num_of_cadidates;i++){ 

    if (depth[target]<depth[i])target=depth; 

  } 

  … 
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Step 4. Try to Steal a Task 
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 readydeque_trysteal function: Try to steal from 
selected victim 

 Can specify confirm function (used in next step) 

  … 

  task_handle ret; 

  ret = readydeque_trysteal(target, 

               depth_aware_confirm, depth[target]); 

  … 
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Step 5. Confirm the Stolen Task 
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 Confirm function: 

 Called when a steal has succeeded 

 Cancel the steal if the stolen task is undesirable 

int depth_aware_confirm(task_handle t,void *param) 

{ 

  int expect_depth=(int)param; 

  int *stolen_task_depth=get_hint_ptr(t); 

  return (*stolen_task_depth)<=expect_depth; 

} 

 

  … 

  task_handle ret; 

  ret = readydeque_trysteal(target, 

               depth_aware_confirm, depth[target]); 

  … 
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Evaluation 
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 Implemented two scheduling strategies 

 Depth-aware 

 Affinity-aware 

 

 Evaluated on a machine with 32 cores 

 Quad-Core Opteron 8354 (2.2 GHz) × 8 Sockets 

 Caches 

 L1D: 64 KB/Core, L2: 512 KB/Core, L3: 2 MB/Socket 

 NUMA Policy :Interleave 
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Depth-Aware Evaluation Result 
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 App: Matrix Multiply using divide-and-conquer 

 Performance gets better if granularity gets larger 

 Size: 768x768 SP 

 Granularity of Computation 
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Depth-Aware Evaluation Result 
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Affinity-Aware Strategy 
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 Give a task an affinity as array of integers 

 How the task desires to be stolen from each worker 

 

 Try to execute a task with the largest affinity 

 

 Variants: 

 Best-effort: Steal even if the affinity is zero 

 Strict: Ignore tasks with no affinity 
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Affinity-Aware Strategy 
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 Benchmark: Repeats STREAM TRIAD 

 Parallelized using divide-and-conquer (256 tasks) 

 Array size: 8MB * 3 = 24MB 

 768KB/core (fits L2 and L3 cache) 

 

 Need to utilize previously cached data 

 Give a task an affinity with a worker of last 
iteration 

 # of candidates=31 
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Affinity-Aware Evaluation Result 
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 Execution time per iteration 

ROSS2013 
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Related Work 
 

 CATS[Chen,2012] 

 Online profiling and DAG partitioning 

 

 Qthreads[Oliver,2012] 

 Share one task queue among intra-socket cores 

 

 Work-stealing with Configurable Scheduling 
Strategies[Wimmer,2013] 

 # of tasks to steal, execution order,… 
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What’s new in Our Work? 
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 Our proposed framework is flexible 

 

 Enable programmers to customize a victim 
selection strategy directly 

 

 Tradeoff: 

 ○ Performance can be much improved 

 × Additional effort for customization 
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Conclusion 
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 Proposed a framework to customize work 
stealing strategy  

 Focus on how to decide a victim of work stealing 

 

 Example customization strategies worked as 
expected 
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Future Work 
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 Improve framework design 

 Look for good tradeoff between performance and 
programmers’ effort 

 

 Further evaluation: 

 Unbalanced application 

 Adaptive Mesh Refinement 

 On distributed memory environment 

 

Thank you for listening! 
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Takeout 
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 We propose a framework to customize work 
stealing strategy 

 Give scheduling hints to tasks 

 User-defined work stealing function 
1. Select candidates of a victim 

2. Read scheduling hints 

3. Select one worker 

4. Try to steal 

5. Confirm 

 MassiveThreads: 
 http://code.google.com/p/massivethreads/ 

 Contact me: 
 nakashima@eidos.ic.i.u-tokyo.ac.jp 

33 


