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Chapter 5

Collective Communication

5.1

Introduction and Overview

Collective communication is defined as communication that involves a group or groups of
processes. The functions of this type provided by MPI are the following:

MPL BARRIER: Barrier synchronization across all members of a group (Section 5.3).

MPL- BCAST: Broadcast from one member to all members of a group (Section 5.4).
This is shown as “broadcast” in Figure 5.1.

MPL GATHER, MPlL- GATHERV: Gather data from all members of a group to one
member (Section 5.5). This is shown as “gather” in Figure 5.1.

MPL SCATTER, MPL- SCATTERYV: Scatter data from one member to all members of
a group (Section 5.6). This is shown as “scatter” in Figure 5.1.

MP- ALLGATHER, MPl- ALLGATHERV: A variation on Gather where all members
of a group receive the result (Section 5.7). This is shown as “allgather” in Figure 5.1.

MPH ALLTOALL, MPI= ALLTOALLV, MPI= ALLTOALLW: Scatter/Gather data from
all members to all members of a group (also called complete exchange or all-to-all)
(Section 5.8). This is shown as “alltoall” in Figure 5.1.

MPI- ALLREDUCE, MPI- REDUCE: Global reduction operations such as sum, max,
min, or user-defined functions, where the result is returned to all members of a group
and a variation where the result is returned to only one member (Section 5.9).

MP-REDUCE_SCATTER: A combined reduction and scatter operation (Section 5.10).

MPE SCAN, MPL- EXSCAN: Scan across all members of a group (also called prefix)
(Section 5.11).

One of the key arguments in a call to a collective routine is a communicator that

defines the group or groups of participating processes and provides a context for the oper-
ation. This is discussed further in Section 5.2. The syntax and semantics of the collective
operations are defined to be consistent with the syntax and semantics of the point-to-point
operations. Thus, general datatypes are allowed and must match between sending and re-
ceiving processes as specified in Chapter ??. Several collective routines such as broadcast
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2 CHAPTER 5. COLLECTIVE COMMUNICATION
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Figure 5.1: Collective move functions illustrated for a group of six processes. In each case,
each row of boxes represents data locations in one process. Thus, in the broadcast, initially
just the first process contains the data Ay, but after the broadcast all processes contain it.
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and gather have a single originating or receiving process. Such a process is called the root.
Some arguments in the collective functions are specified as “significant only at root,” and
are ignored for all participants except the root. The reader is referred to Chapter ??7 for
information concerning communication buffers, general datatypes and type matching rules,
and to Chapter ?? for information on how to define groups and create communicators.

The type-matching conditions for the collective operations are more strict than the cor-
responding conditions between sender and receiver in point-to-point. Namely, for collective
operations, the amount of data sent must exactly match the amount of data specified by the
receiver. Different type maps (the layout in memory, see Section ?7) between sender and
receiver are still allowed. The collective operations do not have a message tag argument.

Collective reutine-ealls operations can (but are not required to) returr complete locally
as soon as +heir the callers participation in the collective communication is eemplete finished.
The local completion of a eall collective operation indicates that the caller is sew free to
access locations in the communication buffer. It does not indicate that other processes in
the group have completed or even started the operation (unless otherwise implied by in
the description of the operation). Thus, a collective communication call may, or may not,
have the effect of synchronizing all calling processes. This statement excludes, of course,
the barrier function.

Collective communication calls may use the same communicators as point-to-point
communication; MP| guarantees that messages generated on behalf of collective communi-
cation calls will not be confused with messages generated by point-to-point communication.
A more detailed discussion of correct use of collective routines is found in Section 5.13.

Rationale. The equal-data restriction (on type matching) was made so as to avoid
the complexity of providing a facility analogous to the status argument of MPI_RECV
for discovering the amount of data sent. Some of the collective routines would require
an array of status values.

The statements about synchronization are made so as to allow a variety of implemen-
tations of the collective functions.

Advice to users. It is dangerous to rely on synchronization side-effects of the col-
lective operations for program correctness. For example, even though a particular
implementation may provide a broadcast routine with a side-effect of synchroniza-
tion, the standard does not require this, and a program that relies on this will not be
portable.

On the other hand, a correct, portable program must allow for the fact that a collective
call may be synchronizing. Though one cannot rely on any synchronization side-effect,
one must program so as to allow it. These issues are discussed further in Section 5.13.
(End of advice to users.)

Advice to implementors. While vendors may write optimized collective routines
matched to their architectures, a complete library of the collective communication
routines can be written entirely using the MPI point-to-point communication func-
tions and a few auxiliary functions. If implementing on top of point-to-point, a hidden,
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4 CHAPTER 5. COLLECTIVE COMMUNICATION

special communicator might be created for the collective operation so as to avoid inter-
ference with any on-going point-to-point communication at the time of the collective
call. This is discussed further in Section 5.13. (End of advice to implementors.)

Many of the descriptions of the collective routines provide illustrations in terms of
blocking MPI point-to-point routines. These are intended solely to indicate what data is
sent or received by what process. Many of these examples are not correct MPI programs;
for purposes of simplicity, they often assume infinite buffering.

5.2 Communicator Argument

The key concept of the collective functions is to have a group or groups of participating
processes. The routines do not have group identifiers as explicit arguments. Instead, there
is a communicator argument. Groups and communicators are discussed in full detail in
Chapter ?7?. For the purposes of this chapter, it is sufficient to know that there are two types
of communicators: intra-communicators and inter-communicators. An intracommunicator
can be thought of as an indentifier for a single group of processes linked with a context. An
intercommunicator identifies two distinct groups of processes linked with a context.

5.2.1 Specifics for Intracommunicator Collective Operations

All processes in the group identified by the intracommunicator must call the collective
routine with matching arguments.

In many cases, collective communication can occur “in place” for intracommunicators,
with the output buffer being identical to the input buffer. This is specified by providing
a special argument value, MPI_IN_PLACE, instead of the send buffer or the receive buffer
argument, depending on the operation performed.

Rationale. The “in place” operations are provided to reduce unnecessary memory
motion by both the MPIl implementation and by the user. Note that while the simple
check of testing whether the send and receive buffers have the same address will
work for some cases (e.g., MPI_ALLREDUCE), they are inadequate in others (e.g.,
MPI_GATHER, with root not equal to zero). Further, Fortran explicitly prohibits
aliasing of arguments; the approach of using a special value to denote “in place”
operation eliminates that difficulty. (End of rationale.)

Advice to users. By allowing the “in place” option, the receive buffer in many of the
collective calls becomes a send-and-receive buffer. For this reason, a Fortran binding
that includes INTENT must mark these as INOUT, not QUT.

Note that MPI_IN_PLACE is a special kind of value; it has the same restrictions on its
use that MPI_BOTTOM has.

Some intracommunicator collective operations do not support the “in place” option
(e.g., MPI_ALLTOALLV). (End of advice to users.)
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5.2.2  Applying Collective Operations to Intercommunicators

To understand how collective operations apply to intercommunicators, we can view most
MPI intracommunicator collective operations as fitting one of the following categories (see,
for instance, [5]):

All-To-All All processes contribute to the result. All processes receive the result.

e MPI_ALLGATHER, MPI_ALLGATHERV
e MPI_ALLTOALL, MPI_ALLTOALLV, MPI_ALLTOALLW
e MPI_ALLREDUCE, MPI_REDUCE_SCATTER

All-To-One All processes contribute to the result. One process receives the result.

e MPI_GATHER, MPI_GATHERV
e MPI_REDUCE

One-To-All One process contributes to the result. All processes receive the result.

e MPI_BCAST
e MPI_SCATTER, MPI_SCATTERV

Other Collective operations that do not fit into one of the above categories.

e MPI_SCAN, MPI_EXSCAN
e MPI_BARRIER

The MPI_BARRIER operation does not fit into this classification since no data is being
moved (other than the implicit fact that a barrier has been called). The data movement
patterns of MPI_SCAN and MPI_EXSCAN do not fit this taxonomy.

The application of collective communication to intercommunicators is best described
in terms of two groups. For example, an all-to-all MPI_ALLGATHER operation can be
described as collecting data from all members of one group with the result appearing in all
members of the other group (see Figure 5.2). As another example, a one-to-all
MPI_BCAST operation sends data from one member of one group to all members of the
other group. Collective computation operations such as MPI_REDUCE_SCATTER have a
similar interpretation (see Figure 5.3). For intracommunicators, these two groups are the
same. For intercommunicators, these two groups are distinct. For the all-to-all operations,
each such operation is described in two phases, so that it has a symmetric, full-duplex
behavior.

The following collective operations also apply to intercommunicators:

e MPI_BARRIER,

MPI_BCAST,
e MPI_GATHER, MPI_GATHERYV,

MPI_SCATTER, MPI_SCATTERYV,

MPI_ALLGATHER, MPI_ALLGATHERYV,
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6 CHAPTER 5. COLLECTIVE COMMUNICATION

e MPI_ALLTOALL, MPI_ALLTOALLV, MPI_ALLTOALLW,
e MPI_ALLREDUCE, MPI_REDUCE,
e MPI_REDUCE_SCATTER.

In C++4, the bindings for these functions are in the MPI::Comm class. However, since
the collective operations do not make sense on a C++ MPI::Comm (as it is neither an
intercommunicator nor an intracommunicator), the functions are all pure virtual.

4 7\

Lcomm Rcomm

Lcomm Rcomm

- J/

Figure 5.2: Intercommunicator allgather. The focus of data to one process is represented,
not mandated by the semantics. The two phases do allgathers in both directions.

5.2.3 Specifics for Intercommunicator Collective Operations

All processes in both groups identified by the intercommunicator must call the collective
routine. In addition, processes in the same group must call the routine with matching
arguments.

Note that the “in place” option for intracommunicators does not apply to intercom-
municators since in the intercommunicator case there is no communication from a process
to itself.

For intercommunicator collective communication, if the operation is rooted (e.g., broad-
cast, gather, scatter), then the transfer is unidirectional. The direction of the transfer is
indicated by a special value of the root argument. In this case, for the group containing
the root process, all processes in the group must call the routine using a special argument
for the root. For this, the root process uses the special root value MPI_ROOT; all other pro-
cesses in the same group as the root use MPI_PROC_NULL. All processes in the other group
(the group that is the remote group relative to the root process) must call the collective
routine and provide the rank of the root. If the operation is unrooted (e.g., alltoall), then
the transfer is bidirectional.
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4 M\

Lcomm Rcomm

Lcomm Rcomm

A J/

Figure 5.3: Intercommunicator reduce-scatter. The focus of data to one process is rep-
resented, not mandated by the semantics. The two phases do reduce-scatters in both
directions.

Rationale. Rooted operations are unidirectional by nature, and there is a clear way
of specifying direction. Non-rooted operations, such as all-to-all, will often occur as
part of an exchange, where it makes sense to communicate in both directions at once.
(End of rationale.)

5.3 Barrier Synchronization

MPI_BARRIER( comm )

IN comm communicator (handle)

int MPI_Barrier(MPI_Comm comm )

MPI_BARRIER(COMM, IERROR)
INTEGER COMM, IERROR

void MPI::Comm: :Barrier() const = 0O

If comm is an intracommunicator, MPI_BARRIER blocks the caller until all group mem-
bers have called it. The call returns at any process only after all group members have entered
the call.

If comm is an intercommunicator, the barrier is performed across all processes in the
intercommunicator. In this case, all processes in one group (group A) of the intercommun-
icator may exit the barrier when all of the processes in the other group (group B) have
entered the barrier.
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8 CHAPTER 5. COLLECTIVE COMMUNICATION

5.4 Broadcast

MPI_BCAST( buffer, count, datatype, root, comm )

INOUT buffer starting address of buffer (choice)

IN count number of entries in buffer (non-negative integer)
IN datatype data type of buffer (handle)

IN root rank of broadcast root (integer)

IN comm communicator (handle)

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm )

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)
<type> BUFFER (*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

void MPI::Comm: :Bcast(void* buffer, int count,
const MPI::Datatype& datatype, int root) const = O

If comm is an intracommunicator, MPI_BCAST broadcasts a message from the process
with rank root to all processes of the group, itself included. It is called by all members of
the group using the same arguments for comm and root. On return, the content of root’s
buffer is copied to all other processes.

General, derived datatypes are allowed for datatype. The type signature of count,
datatype on any process must be equal to the type signature of count, datatype at the root.
This implies that the amount of data sent must be equal to the amount received, pairwise
between each process and the root. MPI_BCAST and all other data-movement collective
routines make this restriction. Distinct type maps between sender and receiver are still
allowed.

The “in place” option is not meaningful here.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is broadcast from the root to all processes
in group B. The buffer arguments of the processes in group B must be consistent with the
buffer argument of the root.

5.4.1 Example using MPI_BCAST
The examples in this section use intracommunicators.
Example 5.1 Broadcast 100 ints from process 0 to every process in the group.

MPI_Comm comm;
int array[100];
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int root=0;

MPI_Bcast( array, 100, MPI_INT, root, comm);

As in many of our example code fragments, we assume that some of the variables (such as
comn in the above) have been assigned appropriate values.

5.5 Gather

MPI_GATHER( sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice, significant only at
root)

IN recvcount number of elements for any single receive (non-negative

integer, significant only at root)

IN recvtype data type of recv buffer elements (significant only at
root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

int MPI_Gather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

MPI_GATHER (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

void MPI::Comm: :Gather(const void* sendbuf, int sendcount, const
MPI::Datatype& sendtype, void* recvbuf, int recvcount,
const MPI::Datatype& recvtype, int root) const = O

If comm is an intracommunicator, each process (root process included) sends the con-
tents of its send buffer to the root process. The root process receives the messages and stores
them in rank order. The outcome is as if each of the n processes in the group (including
the root process) had executed a call to

MPI_Send(sendbuf, sendcount, sendtype, root,...),
and the root had executed n calls to

MPI_Recv(recvbuf + i - recvcount - extent(recvtype), recvcount, recvtype, i, ...),
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10 CHAPTER 5. COLLECTIVE COMMUNICATION

where extent (recvtype) is the type extent obtained from a call to MPI_Type_extent ().

An alternative description is that the n messages sent by the processes in the group
are concatenated in rank order, and the resulting message is received by the root as if by a
call to MPI_RECV(recvbuf, recvcount-n, recvtype, ...).

The receive buffer is ignored for all non-root processes.

General, derived datatypes are allowed for both sendtype and recvtype. The type signa-
ture of sendcount, sendtype on each process must be equal to the type signature of recvcount,
recvtype at the root. This implies that the amount of data sent must be equal to the amount
of data received, pairwise between each process and the root. Distinct type maps between
sender and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes,
only arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts and types should not cause any location on the root to be
written more than once. Such a call is erroneous.

Note that the recvcount argument at the root indicates the number of items it receives
from each process, not the total number of items it receives.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and
the contribution of the root to the gathered vector is assumed to be already in the correct
place in the receive buffer.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is gathered from all processes in group B to
the root. The send buffer arguments of the processes in group B must be consistent with
the receive buffer argument of the root.

MPI_GATHERV( sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root,
comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice, significant only at

root)
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IN recvcounts non-negative integer array (of length group size) con-
taining the number of elements that are received from
each process (significant only at root)

IN displs integer array (of length group size). Entry i specifies
the displacement relative to recvbuf at which to place
the incoming data from process i (significant only at

root)

IN recvtype data type of recv buffer elements (significant only at
root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

int MPI_Gatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int *recvcounts, int *displs,
MPI_Datatype recvtype, int root, MPI_Comm comm)

MPI_GATHERV (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, ROOT, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,
COMM, IERROR

void MPI::Comm: :Gatherv(const void* sendbuf, int sendcount, const
MPI::Datatype& sendtype, void* recvbuf,
const int recvcounts[], const int displsl[],
const MPI::Datatype& recvtype, int root) const = O

MPI_GATHERYV extends the functionality of MPI_GATHER by allowing a varying count
of data from each process, since recvcounts is now an array. It also allows more flexibility
as to where the data is placed on the root, by providing the new argument, displs.

If comm is an intracommunicator, the outcome is as if each process, including the root
process, sends a message to the root,

MPI_Send(sendbuf, sendcount, sendtype, root,...),
and the root executes n receives,
MPI_Recv(recvbuf + displs[j]- extent(recvtype), recvcounts|j], recvtype,i,...).

The data received from process j is placed into recvbuf of the root process beginning at
offset displs[j] elements (in terms of the recvtype).

The receive buffer is ignored for all non-root processes.

The type signature implied by sendcount, sendtype on process i must be equal to the
type signature implied by recvcounts[i], recvtype at the root. This implies that the amount
of data sent must be equal to the amount of data received, pairwise between each process
and the root. Distinct type maps between sender and receiver are still allowed, as illustrated
in Example 5.6.

All arguments to the function are significant on process root, while on other processes,
only arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.
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12 CHAPTER 5. COLLECTIVE COMMUNICATION

The specification of counts, types, and displacements should not cause any location on
the root to be written more than once. Such a call is erroneous.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and
the contribution of the root to the gathered vector is assumed to be already in the correct
place in the receive buffer

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is gathered from all processes in group B to
the root. The send buffer arguments of the processes in group B must be consistent with
the receive buffer argument of the root.

5.5.1 Examples using MPI_GATHER, MPI_GATHERV

The examples in this section use intracommunicators.
Example 5.2 Gather 100 ints from every process in group to root. See figure 5.4.

MPI_Comm comm;
int gsize,sendarray[100];
int root, *rbuf;

MPI_Comm_size( comm, &gsize);
rbuf = (int *)malloc(gsize*x100*sizeof (int));
MPI_Gather( sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

Example 5.3 Previous example modified — only the root allocates memory for the receive

buffer.

MPI_Comm comm;
int gsize,sendarray[100];
int root, myrank, *rbuf;

MPI_Comm_rank( comm, &myrank) ;
if ( myrank == root) {
MPI_Comm_size( comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof (int));
}
MPI_Gather( sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

Example 5.4 Do the same as the previous example, but use a derived datatype. Note
that the type cannot be the entire set of gsize*100 ints since type matching is defined
pairwise between the root and each process in the gather.

MPI_Comm comm;
int gsize,sendarray[100];
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|

100 100

100 100 100
100

at root

rbuf

Figure 5.4: The root process gathers 100 ints from each process in the group.

int root, *rbuf;
MPI_Datatype rtype;

MPI_Comm_size( comm, &gsize);

MPI_Type_contiguous( 100, MPI_INT, &rtype );

MPI_Type_commit( &rtype ) ;

rbuf = (int *)malloc(gsize*100*sizeof (int));

MPI_Gather( sendarray, 100, MPI_INT, rbuf, 1, rtype, root, comm);

Example 5.5 Now have each process send 100 ints to root, but place each set (of 100)
stride ints apart at receiving end. Use MPI_GATHERYV and the displs argument to achieve
this effect. Assume stride > 100. See Figure 5.5.

MPI_Comm comm;

int gsize,sendarray[100];
int root, *rbuf, stride;
int *displs,i,*rcounts;

MPI_Comm_size( comm, &gsize);
rbuf = (int *)malloc(gsize*stridex*sizeof (int));
displs = (int *)malloc(gsizex*sizeof (int));
rcounts = (int *)malloc(gsize*sizeof (int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100;
}
MPI_Gatherv( sendarray, 100, MPI_INT, rbuf, rcounts, displs, MPI_INT,
root, comm);

Note that the program is erroneous if stride < 100.

Example 5.6 Same as Example 5.5 on the receiving side, but send the 100 ints from the
Oth column of a 100x150 int array, in C. See Figure 5.6.

MPI_Comm comm;
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100 100 100

100 100 100
stride
rbuf

Figure 5.5: The root process gathers 100 ints from each process in the group, each set is
placed stride ints apart.

150 150 150

100 I 100 I 100 I all processes

100 100 100

at root
J—
stride

rbuf

Figure 5.6: The root process gathers column 0 of a 100x150 C array, and each set is placed
stride ints apart.

int gsize,sendarray[100] [150];
int root, *rbuf, stride;
MPI_Datatype stype;

int *displs,i,*rcounts;

MPI_Comm_size( comm, &gsize);
rbuf = (int *)malloc(gsize*stridex*sizeof (int));
displs = (int *)malloc(gsize*sizeof (int));
rcounts = (int *)malloc(gsize*sizeof (int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100;
}
/* Create datatype for 1 column of array
*/
MPI_Type_vector( 100, 1, 150, MPI_INT, &stype);
MPI_Type_commit( &stype );
MPI_Gatherv( sendarray, 1, stype, rbuf, rcounts, displs, MPI_INT,
root, comm);

Example 5.7 Process i sends (100-i) ints from the i-th column of a 100 x 150 int
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150 150 150

IOOI 100 I 100 I all processes
stride

rbuf

Figure 5.7: The root process gathers 100-i ints from column i of a 100x150 C array, and
each set is placed stride ints apart.

array, in C. It is received into a buffer with stride, as in the previous two examples. See
Figure 5.7.

MPI_Comm comm;

int gsize,sendarray[100] [150],*sptr;
int root, *rbuf, stride, myrank;
MPI_Datatype stype;

int *displs,i,*rcounts;

MPI_Comm_size( comm, &gsize);
MPI_Comm_rank( comm, &myrank );
rbuf = (int *)malloc(gsizexstridex*sizeof (int));
displs = (int *)malloc(gsizex*sizeof (int));
rcounts = (int *)malloc(gsize*sizeof (int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100-i; /* note change from previous example */
}
/* Create datatype for the column we are sending
*/
MPI_Type_vector( 100-myrank, 1, 150, MPI_INT, &stype);
MPI_Type_commit( &stype );
/* sptr is the address of start of "myrank" column
*/
sptr = &sendarray[0] [myrank] ;
MPI_Gatherv( sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,
root, comm);

Note that a different amount of data is received from each process.
Example 5.8 Same as Example 5.7, but done in a different way at the sending end. We

create a datatype that causes the correct striding at the sending end so that we read a
column of a C array. A similar thing was done in Example 7?7, Section ?77.
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MPI_Comm comm;

int gsize,sendarray[100] [150],*sptr;

int root, *rbuf, stride, myrank, disp[2], blocklen[2];
MPI_Datatype stype,typel2];

int *displs,i,*rcounts;

MPI_Comm_size( comm, &gsize);
MPI_Comm_rank( comm, &myrank );
rbuf = (int *)malloc(gsize*stridex*sizeof (int));
displs = (int *)malloc(gsizex*sizeof (int));
rcounts = (int *)malloc(gsize*sizeof (int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
rcounts[i] = 100-i;
}
/* Create datatype for one int, with extent of entire row
*/
disp[0] = 0; disp[1] 150*sizeof (int) ;
type[0] = MPI_INT; typel[1] = MPI_UB;
blocklen[0] = 1; blocklen[1] = 1;
MPI_Type_struct( 2, blocklen, disp, type, &stype );
MPI_Type_commit( &stype );
sptr = &sendarray[0] [myrank] ;
MPI_Gatherv( sptr, 100-myrank, stype, rbuf, rcounts, displs, MPI_INT,
root, comm);

Example 5.9 Same as Example 5.7 at sending side, but at receiving side we make the
stride between received blocks vary from block to block. See Figure 5.8.

MPI_Comm comm;

int gsize,sendarray[100] [150],*sptr;

int root, *rbuf, *stride, myrank, bufsize;
MPI_Datatype stype;

int *displs,i,*rcounts,offset;

MPI_Comm_size( comm, &gsize);
MPI_Comm_rank( comm, &myrank );

stride = (int *)malloc(gsize*sizeof (int));

/* stride[i] for i = 0 to gsize-1 is set somehow

*/
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150 150 150
100 I 100 I 100 I
100 99 98

stride[1]

all processes

rbuf

Figure 5.8: The root process gathers 100-i ints from column i of a 100x150 C array, and
each set is placed stride[i] ints apart (a varying stride).

/* set up displs and rcounts vectors first
*/
displs = (int *)malloc(gsizex*sizeof (int));
rcounts = (int *)malloc(gsize*sizeof (int));
offset = 0;
for (i=0; i<gsize; ++i) {
displs[i] = offset;
offset += stridel[i]l;
rcounts[i] = 100-i;
}
/* the required buffer size for rbuf is now easily obtained
*/
bufsize = displs[gsize-1]+rcounts[gsize-1];
rbuf = (int *)malloc(bufsizex*sizeof(int));
/* Create datatype for the column we are sending
*/
MPI_Type_vector( 100-myrank, 1, 150, MPI_INT, &stype);
MPI_Type_commit( &stype );
sptr = &sendarray[0] [myrank] ;
MPI_Gatherv( sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,
root, comm);

Example 5.10 Process i sends num ints from the i-th column of a 100 x 150 int array,
in C. The complicating factor is that the various values of num are not known to root, so a
separate gather must first be run to find these out. The data is placed contiguously at the
receiving end.

MPI_Comm comm;

int gsize,sendarray[100] [150],*sptr;

int root, *rbuf, stride, myrank, disp[2], blocklen[2];
MPI_Datatype stype,types[2];

int *displs,i,*rcounts,num;
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MPI_Comm_size( comm, &gsize);
MPI_Comm_rank( comm, &myrank );

/* First, gather nums to root
*/

rcounts = (int *)malloc(gsize*sizeof (int));

MPI_Gather( &num, 1, MPI_INT, rcounts, 1, MPI_INT, root, comm);
/* root now has correct rcounts, using these we set displs[] so
* that data is placed contiguously (or concatenated) at receive end

*/
displs = (int *)malloc(gsizex*sizeof (int));
displs[0] = 0;
for (i=1; i<gsize; ++i) {
displs[i] = displs[i-1]+rcounts[i-1];
}
/* And, create receive buffer

*/

rbuf = (int *)malloc(gsizex(displs[gsize-1]+rcounts[gsize-1])

/* Create datatype for one int, with extent of entire row
*/

disp[0] = 0; disp[1] 150*sizeof (int) ;

typel[0] = MPI_INT; typel[1] = MPI_UB;

blocklen[0] = 1; blocklen[1] = 1;

MPI_Type_struct( 2, blocklen, disp, type, &stype );

MPI_Type_commit( &stype );

sptr = &sendarray[0] [myrank] ;

*sizeof (int));

MPI_Gatherv( sptr, num, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);
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5.6 Scatter

MPI_SCATTER( sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)
IN sendbuf address of send buffer (choice, significant only at root)

IN sendcount number of elements sent to each process (non-negative
integer, significant only at root)

IN sendtype data type of send buffer elements (significant only at
root) (handle)

ouT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-
teger)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

int MPI_Scatter(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm)

MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, IERROR)
<type> SENDBUF (*), RECVBUF ()
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

void MPI::Comm: :Scatter(const void* sendbuf, int sendcount, const
MPI::Datatype& sendtype, void* recvbuf, int recvcount,
const MPI::Datatype& recvtype, int root) const = O

MPI_SCATTER is the inverse operation to MPI_GATHER.
If comm is an intracommunicator, the outcome is as if the root executed n send oper-
ations,

MPI_Send(sendbuf + i - sendcount - extent(sendtype), sendcount, sendtype, i, ...),
and each process executed a receive,
MPI_Recv(recvbuf,recvcount,recvtype,i,...).

An alternative description is that the root sends a message with MPI_Send(sendbuf,
sendcount-n, sendtype, ...). This message is split into n equal segments, the i-th segment is
sent to the i-th process in the group, and each process receives this message as above.

The send buffer is ignored for all non-root processes.

The type signature associated with sendcount, sendtype at the root must be equal to
the type signature associated with recvcount, recvtype at all processes (however, the type
maps may be different). This implies that the amount of data sent must be equal to the
amount of data received, pairwise between each process and the root. Distinct type maps
between sender and receiver are still allowed.
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All arguments to the function are significant on process root, while on other processes,
only arguments recvbuf, recvcount, recvtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts and types should not cause any location on the root to be
read more than once.

Rationale. Though not needed, the last restriction is imposed so as to achieve
symmetry with MPI_GATHER, where the corresponding restriction (a multiple-write
restriction) is necessary. (End of rationale.)

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of recvbuf at the root. In such case, recvcount and recvtype are ignored, and root
“sends” no data to itself. The scattered vector is still assumed to contain n segments, where
n is the group size; the root-th segment, which root should “send to itself,” is not moved.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is scattered from the root to all processes in
group B. The receive buffer arguments of the processes in group B must be consistent with
the send buffer argument of the root.

MPI_SCATTERV( sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root,
comm)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcounts non-negative integer array (of length group size) speci-
fying the number of elements to send to each processor

IN displs integer array (of length group size). Entry i specifies
the displacement (relative to sendbuf ) from which to
take the outgoing data to process i

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-
teger)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

int MPI_Scatterv(void* sendbuf, int *sendcounts, int *displs,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)

MPI_SCATTERV (SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, ROOT, COMM, IERROR)
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<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,
COMM, IERROR

void MPI::Comm: :Scatterv(const void* sendbuf, const int sendcounts[],
const int displs[], const MPI::Datatype& sendtype,
void* recvbuf, int recvcount, const MPI::Datatype& recvtype,
int root) comnst = 0

MPI_SCATTERYV is the inverse operation to MPI_GATHERV.

MPI_SCATTERV extends the functionality of MPI_SCATTER by allowing a varying
count of data to be sent to each process, since sendcounts is now an array. It also allows
more flexibility as to where the data is taken from on the root, by providing an additional
argument, displs.

If comm is an intracommunicator, the outcome is as if the root executed n send oper-
ations,

MPI_Send(sendbuf + displs[i] - extent(sendtype), sendcounts[i|, sendtype,i,...),
and each process executed a receive,
MPI_Recv(recvbuf, recvcount,recvtype,i,...).

The send buffer is ignored for all non-root processes.

The type signature implied by sendcount[i], sendtype at the root must be equal to the
type signature implied by recvcount, recvtype at process i (however, the type maps may be
different). This implies that the amount of data sent must be equal to the amount of data
received, pairwise between each process and the root. Distinct type maps between sender
and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes,
only arguments recvbuf, recvcount, recvtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts, types, and displacements should not cause any location on
the root to be read more than once.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of recvbuf at the root. In such case, recvcount and recvtype are ignored, and root
“sends” no data to itself. The scattered vector is still assumed to contain n segments, where
n is the group size; the root-th segment, which root should “send to itself,” is not moved.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is scattered from the root to all processes in
group B. The receive buffer arguments of the processes in group B must be consistent with
the send buffer argument of the root.

5.6.1 Examples using MPI_SCATTER, MPI_SCATTERV

The examples in this section use intracommunicators.

Example 5.11 The reverse of Example 5.2. Scatter sets of 100 ints from the root to each
process in the group. See Figure 5.9.
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at root

sendbuf

Figure 5.9: The root process scatters sets of 100 ints to each process in the group.

MPI_Comm comm;
int gsize,*sendbuf;
int root, rbuf[100];

MPI_Comm_size( comm, &gsize);
sendbuf = (int *)malloc(gsize*100*sizeof (int));

MPI_Scatter( sendbuf, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

Example 5.12 The reverse of Example 5.5. The root process scatters sets of 100 ints to
the other processes, but the sets of 100 are stride ints apart in the sending buffer. Requires
use of MPI_SCATTERV. Assume stride > 100. See Figure 5.10.

MPI_Comm comm;
int gsize,*sendbuf;
int root, rbuf[100], i, *displs, *scounts;

MPI_Comm_size( comm, &gsize);
sendbuf = (int *)malloc(gsize*stride*sizeof (int));

displs = (int *)malloc(gsizex*sizeof (int));
scounts = (int *)malloc(gsize*sizeof (int));
for (i=0; i<gsize; ++i) {
displs[i] = i*stride;
scounts[i] = 100;
}
MPI_Scatterv( sendbuf, scounts, displs, MPI_INT, rbuf, 100, MPI_INT,
root, comm);

Example 5.13 The reverse of Example 5.9. We have a varying stride between blocks at
sending (root) side, at the receiving side we receive into the i-th column of a 100x150 C
array. See Figure 5.11.

MPI_Comm comm;
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100 100

stride

sendbuf

Figure 5.10: The root process scatters sets of 100 ints, moving by stride ints from send
to send in the scatter.

int gsize,recvarray[100] [150],*rptr;

int root, *sendbuf, myrank, bufsize, *stride;
MPI_Datatype rtype;

int i, *displs, *scounts, offset;

MPI_Comm_size( comm, &gsize);
MPI_Comm_rank( comm, &myrank );

stride = (int *)malloc(gsize*sizeof (int));

/* stride[i] for i = 0 to gsize-1 is set somehow
* sendbuf comes from elsewhere

*/

displs = (int *)malloc(gsizex*sizeof (int));
scounts = (int *)malloc(gsize*sizeof (int));
offset = 0;
for (i=0; i<gsize; ++i) {
displs[i] = offset;
offset += stridel[i];
scounts[i] = 100 - i;
}
/* Create datatype for the column we are receiving
*/
MPI_Type_vector( 100-myrank, 1, 150, MPI_INT, &rtype);
MPI_Type_commit( &rtype );
rptr = &recvarray[0] [myrank];
MPI_Scatterv( sendbuf, scounts, displs, MPI_INT, rptr, 1, rtype,
root, comm);
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F

]50

all processes

171
_//

- ‘ atroot

stri de[ 1]
sendbuf

Figure 5.11: The root scatters blocks of 100-i ints into column i of a 100x150 C array.
At the sending side, the blocks are stride[i] ints apart.

5.7 Gather-to-all

MPI_ALLGATHER( sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-

negative integer)
IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI_Allgather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

MPI_ALLGATHER (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

void MPI::Comm::Allgather(const void* sendbuf, int sendcount, const
MPI::Datatype& sendtype, void* recvbuf, int recvcount,
const MPI::Datatype& recvtype) const = 0

MPI_ALLGATHER can be thought of as MPI_GATHER, but where all processes receive
the result, instead of just the root. The block of data sent from the j-th process is received
by every process and placed in the j-th block of the buffer recvbuf.

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at any other process.
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If comm is an intracommunicator, the outcome of a call to MPI_ALLGATHER(...) is as
if all processes executed n calls to

MPI_GATHER (sendbuf,sendcount,sendtype,recvbuf,recvcount,
recvtype,root,comm),

forroot = 0 , ..., n-1. Therules for correct usage of MPI_ALLGATHER are easily found
from the corresponding rules for MPI_GATHER.

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at all processes. sendcount and sendtype are ignored.
Then the input data of each process is assumed to be in the area where that process would
receive its own contribution to the receive buffer.

If comm is an intercommunicator, then each process in group A contributes a data
item; these items are concatenated and the result is stored at each process in group B.
Conversely the concatenation of the contributions of the processes in group B is stored at
each process in group A. The send buffer arguments in group A must be consistent with
the receive buffer arguments in group B, and vice versa.

Advice to users. The communication pattern of MPI_ALLGATHER executed on an
intercommunication domain need not be symmetric. The number of items sent by
processes in group A (as specified by the arguments sendcount, sendtype in group A
and the arguments recvcount, recvtype in group B), need not equal the number of
items sent by processes in group B (as specified by the arguments sendcount, sendtype
in group B and the arguments recvcount, recvtype in group A). In particular, one can
move data in only one direction by specifying sendcount = 0 for the communication
in the reverse direction.

(End of advice to users.)

MPI_ALLGATHERV( sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice)

IN recvcounts non-negative integer array (of length group size) con-

taining the number of elements that are received from
each process

IN displs integer array (of length group size). Entry i specifies
the displacement (relative to recvbuf) at which to place
the incoming data from process i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI_Allgatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int *recvcounts, int *displs,
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MPI_Datatype recvtype, MPI_Comm comm)

MPI_ALLGATHERV (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,
IERROR

void MPI::Comm: :Allgatherv(const void* sendbuf, int sendcount, const
MPI::Datatype& sendtype, void* recvbuf,
const int recvcounts[], const int displs[],
const MPI::Datatype& recvtype) const = 0

MPI_ALLGATHERYV can be thought of as MPI_GATHERV, but where all processes re-
ceive the result, instead of just the root. The block of data sent from the j-th process is
received by every process and placed in the j-th block of the buffer recvbuf. These blocks
need not all be the same size.

The type signature associated with sendcount, sendtype, at process j must be equal to
the type signature associated with recvcounts|j], recvtype at any other process.

If comm is an intracommunicator, the outcome is as if all processes executed calls to

MPI_GATHERV (sendbuf,sendcount,sendtype,recvbuf,recvcounts,displs,
recvtype,root,comm) ,

for root = 0 , ..., n-1. The rules for correct usage of MPI_ALLGATHERYV are easily
found from the corresponding rules for MPI_GATHERV.

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at all processes. sendcount and sendtype are ignored.
Then the input data of each process is assumed to be in the area where that process would
receive its own contribution to the receive buffer.

If comm is an intercommunicator, then each process in group A contributes a data
item; these items are concatenated and the result is stored at each process in group B.
Conversely the concatenation of the contributions of the processes in group B is stored at
each process in group A. The send buffer arguments in group A must be consistent with
the receive buffer arguments in group B, and vice versa.

5.7.1 Examples using MPI_ALLGATHER, MPI_ALLGATHERV
The examples in this section use intracommunicators.

Example 5.14 The all-gather version of Example 5.2. Using MPI_ALLGATHER, we will
gather 100 ints from every process in the group to every process.

MPI_Comm comm;
int gsize,sendarray[100];
int *rbuf;

MPI_Comm_size( comm, &gsize);
rbuf = (int *)malloc(gsize*100*sizeof (int));
MPI_Allgather( sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, comm);

After the call, every process has the group-wide concatenation of the sets of data.
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5.8 All-to-All Scatter/Gather

MPI_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each process (non-negative
integer)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-

negative integer)
IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI_Alltoall(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

MPI_ALLTOALL (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

void MPI::Comm::Alltoall(const void* sendbuf, int sendcount, const
MPI: :Datatype& sendtype, void* recvbuf, int recvcount,
const MPI::Datatype& recvtype) const = 0

MPI_ALLTOALL is an extension of MPI_ALLGATHER to the case where each process
sends distinct data to each of the receivers. The j-th block sent from process i is received
by process j and is placed in the i-th block of recvbuf.

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at any other process. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. As usual, however, the type maps may be different.

If comm is an intracommunicator, the outcome is as if each process executed a send to
each process (itself included) with a call to,

MPI_Send(sendbuf + i - sendcount - extent(sendtype), sendcount, sendtype, i, ...),
and a receive from every other process with a call to,
MPI_Recv(recvbuf + i - recvcount - extent(recvtype), recvcount, recvtype,i,...).

All arguments on all processes are significant. The argument comm must have identical
values on all processes.

No “in place” option is supported.

If comm is an intercommunicator, then the outcome is as if each process in group A
sends a message to each process in group B, and vice versa. The j-th send buffer of process
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i in group A should be consistent with the i-th receive buffer of process j in group B, and

vice

versa.

Advice to users. When all-to-all is executed on an intercommunication domain, then
the number of data items sent from processes in group A to processes in group B need
not equal the number of items sent in the reverse direction. In particular, one can have
unidirectional communication by specifying sendcount = 0 in the reverse direction.

(End of advice to users.)

MPI_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recv-
type, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array equal to the group size spec-
ifying the number of elements to send to each proces-
sor

IN sdispls integer array (of length group size). Entry j specifies
the displacement (relative to sendbuf ) from which to
take the outgoing data destined for process j

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice)

IN recvcounts non-negative integer array equal to the group size spec-
ifying the number of elements that can be received
from each processor

IN rdispls integer array (of length group size). Entry i speci-
fies the displacement (relative to recvbuf ) at which to
place the incoming data from process i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI_Alltoallv(void* sendbuf, int *sendcounts, int *sdispls,

MPI_

MPI_Datatype sendtype, void* recvbuf, int *recvcounts,
int *rdispls, MPI_Datatype recvtype, MPI_Comm comm)

ALLTOALLV (SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,
RDISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF (*), RECVBUF (%)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(x*),

RECVTYPE, COMM, IERROR

void MPI::Comm::Alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], const MPI::Datatype& sendtype,
void* recvbuf, const int recvcounts[], const int rdispls[],
const MPI::Datatype& recvtype) const = 0
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MPI_ALLTOALLV adds flexibility to MPI_ALLTOALL in that the location of data for
the send is specified by sdispls and the location of the placement of the data on the receive
side is specified by rdispls.

If comm is an intracommunicator, then the j-th block sent from process i is received
by process j and is placed in the i-th block of recvbuf. These blocks need not all have the
same size.

The type signature associated with sendcount[j], sendtype at process i must be equal
to the type signature associated with recvcount[i], recvtype at process j. This implies that
the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. Distinct type maps between sender and receiver are still allowed.

The outcome is as if each process sent a message to every other process with,

MPI_Send(sendbuf + displs[i] - extent(sendtype), sendcounts[i|, sendtype,1i,...),
and received a message from every other process with a call to
MPI_Recv(recvbuf + displs[i] - extent(recvtype),recvcounts|i], recvtype,i,...).

All arguments on all processes are significant. The argument comm must have identical
values on all processes.

No “in place” option is supported.

If comm is an intercommunicator, then the outcome is as if each process in group A
sends a message to each process in group B, and vice versa. The j-th send buffer of process
i in group A should be consistent with the i-th receive buffer of process j in group B, and
vice versa.

Rationale. The definitions of MPI_ALLTOALL and MPI_ALLTOALLV give as much
flexibility as one would achieve by specifying n independent, point-to-point communi-
cations, with two exceptions: all messages use the same datatype, and messages are
scattered from (or gathered to) sequential storage. (End of rationale.)

Advice to implementors.  Although the discussion of collective communication in
terms of point-to-point operation implies that each message is transferred directly
from sender to receiver, implementations may use a tree communication pattern.
Messages can be forwarded by intermediate nodes where they are split (for scatter) or
concatenated (for gather), if this is more efficient. (End of advice to implementors.)
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MPI_ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recv-
types, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcounts integer array equal to the group size specifying the
number of elements to send to each processor (array
of non-negative integers)

IN sdispls integer array (of length group size). Entry j specifies
the displacement in bytes (relative to sendbuf) from
which to take the outgoing data destined for process
j (array of integers)

IN sendtypes array of datatypes (of length group size). Entry j
specifies the type of data to send to process j (array
of handles)

ouT recvbuf address of receive buffer (choice)

IN recvcounts integer array equal to the group size specifying the

number of elements that can be received from each
processor (array of non-negative integers)

IN rdispls integer array (of length group size). Entry i specifies
the displacement in bytes (relative to recvbuf) at which
to place the incoming data from process i (array of
integers)

IN recvtypes array of datatypes (of length group size). Entry i
specifies the type of data received from process i (ar-
ray of handles)

IN comm communicator (handle)

int MPI_Alltoallw(void *sendbuf, int sendcounts[], int sdispls[],
MPI_Datatype sendtypes[], void *recvbuf, int recvcounts[],
int rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm)

MPI_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,
RDISPLS, RECVTYPES, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(%*), RECVCOUNTS (%),
RDISPLS(*), RECVTYPES(*), COMM, IERROR

void MPI::Comm::Alltoallw(const void* sendbuf, const int sendcounts[],
const int sdispls[], const MPI::Datatype sendtypes[], void*
recvbuf, const int recvcounts[], const int rdispls[], const
MPI::Datatype recvtypes[]) const = 0

MPI_ALLTOALLW is the most general form of All-to-all. Like
MPI_TYPE_CREATE_STRUCT, the most general type constructor, MPI_ALLTOALLW al-
lows separate specification of count, displacement and datatype. In addition, to allow max-
imum flexibility, the displacement of blocks within the send and receive buffers is specified
in bytes.
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If comm is an intracommunicator, then the j-th block sent from process i is received
by process j and is placed in the i-th block of recvbuf. These blocks need not all have the
same size.

The type signature associated with sendcounts][j], sendtypes|j] at process i must be equal
to the type signature associated with recvcounts|i], recvtypes[i] at process j. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. Distinct type maps between sender and receiver are still allowed.

The outcome is as if each process sent a message to every other process with

MPI_Send(sendbuf + sdispls[i], sendcounts[i], sendtypes[i], i,...),
and received a message from every other process with a call to
MPI_Recv(recvbuf + rdispls[i], recvcounts[i], recvtypes|i], i, ...).

All arguments on all processes are significant. The argument comm must describe the
same communicator on all processes.

No “in place” option is supported.

If comm is an intercommunicator, then the outcome is as if each process in group A
sends a message to each process in group B, and vice versa. The j-th send buffer of process
i in group A should be consistent with the i-th receive buffer of process j in group B, and
vice versa.

Rationale. The MPI_ALLTOALLW function generalizes several MPI functions by care-
fully selecting the input arguments. For example, by making all but one process have
sendcounts[i] = 0, this achieves an MPI_SCATTERW function. (End of rationale.)

5.9 Global Reduction Operations

The functions in this section perform a global reduce operation (such as sum, max, logical
AND, etc.) across all members of a group. The reduction operation can be either one of
a predefined list of operations, or a user-defined operation. The global reduction functions
come in several flavors: a reduce that returns the result of the reduction to one member of a
group, an all-reduce that returns this result to all members of a group, and two scan (parallel
prefix) operations. In addition, a reduce-scatter operation combines the functionality of a
reduce and of a scatter operation.
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5.9.1 Reduce

MPI_REDUCE( sendbuf, recvbuf, count, datatype, op, root, comm)

IN sendbuf address of send buffer (choice)

ouT recvbuf address of receive buffer (choice, significant only at
root)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype data type of elements of send buffer (handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

int MPI_Reduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

MPI_REDUCE (SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (*)
INTEGER COUNT, DATATYPE, 0P, ROOT, COMM, IERROR

void MPI::Comm: :Reduce(const void* sendbuf, void* recvbuf, int count,
const MPI::Datatype& datatype, const MPI::0p& op, int root)
const = 0

If comm is an intracommunicator, MPI_REDUCE combines the elements provided in the
input buffer of each process in the group, using the operation op, and returns the combined
value in the output buffer of the process with rank root. The input buffer is defined by
the arguments sendbuf, count and datatype; the output buffer is defined by the arguments
recvbuf, count and datatype; both have the same number of elements, with the same type.
The routine is called by all group members using the same arguments for count, datatype,
op, root and comm. Thus, all processes provide input buffers and output buffers of the same
length, with elements of the same type. Each process can provide one element, or a sequence
of elements, in which case the combine operation is executed element-wise on each entry of
the sequence. For example, if the operation is MPI_MAX and the send buffer contains two
elements that are floating point numbers (count = 2 and datatype = MPI_FLOAT), then
recvbuf(1) = global max(sendbuf(1)) and recvbuf(2) = global max(sendbuf(2)).

Section 5.9.2, lists the set of predefined operations provided by MPI. That section also
enumerates the datatypes each operation can be applied to. In addition, users may define
their own operations that can be overloaded to operate on several datatypes, either basic
or derived. This is further explained in Section 5.9.5.

The operation op is always assumed to be associative. All predefined operations are also
assumed to be commutative. Users may define operations that are assumed to be associative,
but not commutative. The “canonical” evaluation order of a reduction is determined by the
ranks of the processes in the group. However, the implementation can take advantage of
associativity, or associativity and commutativity in order to change the order of evaluation.
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This may change the result of the reduction for operations that are not strictly associative
and commutative, such as floating point addition.

Advice to implementors. It is strongly recommended that MPI_REDUCE be imple-
mented so that the same result be obtained whenever the function is applied on the
same arguments, appearing in the same order. Note that this may prevent optimiza-
tions that take advantage of the physical location of processors. (End of advice to
implementors.)

The datatype argument of MPI_REDUCE must be compatible with op. Predefined op-
erators work only with the MPI types listed in Section 5.9.2 and Section 5.9.4. Furthermore,
the datatype and op given for predefined operators must be the same on all processes.

Note that it is possible for users to supply different user-defined operations to
MPI_REDUCE in each process. MPI does not define which operations are used on which
operands in this case. User-defined operators may operate on general, derived datatypes.
In this case, each argument that the reduce operation is applied to is one element described
by such a datatype, which may contain several basic values. This is further explained in
Section 5.9.5.

Advice to users.  Users should make no assumptions about how MPI_REDUCE is
implemented. Safest is to ensure that the same function is passed to MPI_REDUCE
by each process. (End of advice to users.)

Overlapping datatypes are permitted in “send” buffers. Overlapping datatypes in “re-
ceive” buffers are erroneous and may give unpredictable results.

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at the root. In such case, the input data is taken
at the root from the receive buffer, where it will be replaced by the output data.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Only send buffer arguments are significant in group
B and only receive buffer arguments are significant at the root.

5.9.2 Predefined Reduction Operations

The following predefined operations are supplied for MPI_REDUCE and related functions
MPI_ALLREDUCE, MPI_REDUCE_SCATTER, MPI_SCAN, and MPI_EXSCAN. These oper-
ations are invoked by placing the following in op.

Name Meaning
MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and

MPI_BAND bit-wise and

10

11

12

13

14

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

40

41

42

43

44

46

47

48



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

34

MPI_LOR
MPI_BOR
MPI_LXOR
MPI_BXOR
MPI_MAXLOC
MPI_MINLOC

CHAPTER 5. COLLECTIVE COMMUNICATION

logical or

bit-wise or

logical exclusive or (xor)
bit-wise exclusive or (xor)
max value and location
min value and location

The two operations MPI_MINLOC and MPI_MAXLOC are discussed separately in Sec-
tion 5.9.4. For the other predefined operations, we enumerate below the allowed combi-
nations of op and datatype arguments. First, define groups of MPI basic datatypes in the

following way.

C integer:

Fortran integer:
Floating point:

Logical:
Complex:
Byte:

MPI_INT, MPI_LONG, MPI_SHORT,
MPI_UNSIGNED_SHORT, MPI_UNSIGNED,
MPI_UNSIGNED_LONG,
MPI_LONG_LONG_INT,

MPI_LONG_LONG (as synonym),
MPI_UNSIGNED_LONG_LONG,
MPI_SIGNED_CHAR, MPI_UNSIGNED_CHAR
MPI_INTEGER

MPI_FLOAT, MPI_DOUBLE, MPI_REAL,
MPI_DOUBLE_PRECISION
MPI_LONG_DOUBLE

MPI_LOGICAL

MPI_COMPLEX

MPI_BYTE

Now, the valid datatypes for each option is specified below.

Op

MPI_MAX, MPI_MIN

MPI_SUM, MPI_PROD
MPI_LAND, MPI_LOR, MPI_LXOR
MPI_BAND, MPI_BOR, MPI_BXOR

Allowed Types

C integer, Fortran integer, Floating point

C integer, Fortran integer, Floating point, Complex
C integer, Logical

C integer, Fortran integer, Byte

The following examples use intracommunicators.

Example 5.15 A routine that computes the dot product of two vectors that are distributed
across a group of processes and returns the answer at node zero.

SUBROUTINE PAR_BLAS1(m, a, b, c, comm)

REAL a(m), b(m) I local slice of array
REAL c ! result (at node zero)
REAL sum

INTEGER m, comm, i, ierr

! local sum
sum = 0.0
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D0Oi=1, m
sum = sum + a(i)*b(i)
END DO

I global sum
CALL MPI_REDUCE(sum, c, 1, MPI_REAL, MPI_SUM, O, comm, ierr)
RETURN

Example 5.16 A routine that computes the product of a vector and an array that are
distributed across a group of processes and returns the answer at node zero.

SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)

REAL a(m), b(m,n) I local slice of array
REAL c(n) | result
REAL sum(n)

INTEGER n, comm, i, j, ierr

! local sum
DO j=1, n
sum(j) = 0.0
DOi=1, m
) = sum(j) + a(id)*b(d,j)

I global sum
CALL MPI_REDUCE(sum, ¢, n, MPI_REAL, MPI_SUM, O, comm, ierr)

| return result at node zero (and garbage at the other nodes)
RETURN

5.9.3 Signed Characters and Reductions

The types MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR can be used in reduction op-
erations. MPI_CHAR (which represents printable characters) cannot be used in reduc-
tion operations. In a heterogeneous environment, MPI_CHAR and MPI_WCHAR will be
translated so as to preserve the printable character, whereas MPI_SIGNED_CHAR and
MPI_UNSIGNED_CHAR will be translated so as to preserve the integer value.

Advice to users.  The types MPI_CHAR and MPI_CHARACTER are intended for
characters, and so will be translated to preserve the printable representation, rather
than the integer value, if sent between machines with different character codes. The
types MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR should be used in C if the
integer value should be preserved. (End of advice to users.)
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5.9.4 MINLOC and MAXLOC

The operator MPI_MINLOC is used to compute a global minimum and also an index attached
to the minimum value. MPI_MAXLOC similarly computes a global maximum and index. One
application of these is to compute a global minimum (maximum) and the rank of the process
containing this value.

The operation that defines MPI_MAXLOC is:

(1)-(7)=(%)

where

w = max(u,v)

and
i ifu>w
k={ min(i,j) ifu=v
7 ifu<w
MPI_MINLOC is defined similarly:
u) (v )_(w
i i)\ k
where
w = min(u,v)
and
i ifu<w
k=< min(i,j) ifu=v
j ifu>wv

Both operations are associative and commutative. Note that if MPI_MAXLOC is applied
to reduce a sequence of pairs (ug,0), (u1,1),..., (up—1,n — 1), then the value returned is
(u,r), where u = max; u; and r is the index of the first global maximum in the sequence.
Thus, if each process supplies a value and its rank within the group, then a reduce operation
with op = MPI_MAXLOC will return the maximum value and the rank of the first process with
that value. Similarly, MPI_MINLOC can be used to return a minimum and its index. More
generally, MPI_MINLOC computes a lexicographic minimum, where elements are ordered
according to the first component of each pair, and ties are resolved according to the second
component.

The reduce operation is defined to operate on arguments that consist of a pair: value
and index. For both Fortran and C, types are provided to describe the pair. The potentially
mixed-type nature of such arguments is a problem in Fortran. The problem is circumvented,
for Fortran, by having the MPIl-provided type consist of a pair of the same type as value,
and coercing the index to this type also. In C, the MPIl-provided pair type has distinct
types and the index is an int.

In order to use MPI_MINLOC and MPI_MAXLOC in a reduce operation, one must provide
a datatype argument that represents a pair (value and index). MPI provides nine such
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predefined datatypes. The operations MPI_MAXLOC and MPI_MINLOC can be used with

each of the following datatypes.

Fortran:
Name

MPI_2REAL
MPI_2DOUBLE_PRECISION
MPI_2INTEGER

C:

Name

MPI_FLOAT_INT
MPI_DOUBLE_INT
MPI_LONG_INT

MPI_2INT

MPI_SHORT_INT
MPI_LONG_DOUBLE_INT

Description

pair of REALs

pair of DOUBLE PRECISION variables
pair of INTEGERs

Description

float and int
double and int
long and int

pair of int

short and int

long double and int

The datatype MPI_2REAL is as if defined by the following (see Section 77).

MPI_TYPE_CONTIGUOUS(2, MPI_REAL, MPI_2REAL)

Similar statements apply for MPI_2INTEGER, MPI_2DOUBLE_PRECISION, and MPI_2INT.
The datatype MPI_FLOAT_INT is as if defined by the following sequence of instructions.

type [0]
type [1]
disp[0]
disp[1]
block[0]
block[1]

MPI_FLOAT

sizeof (float)

MPI_TYPE_STRUCT(2, block, disp, type, MPI_FLOAT_INT)

Similar statements apply for MPI_LONG_INT and MPI_DOUBLE_INT.
The following examples use intracommunicators.

Example 5.17 Each process has an array of 30 doubles, in C. For each of the 30 locations,
compute the value and rank of the process containing the largest value.

/* each process has an array of 30 double: ain[30]

*/

double ain[30], aout[30];
ind [30];

struct {

double val;

int
} in[30], out[30];
int i, myrank, root;

int
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MPI_Comm_rank(comm, &myrank) ;
for (i=0; i<30; ++i) {
in[i] .val = ain[i];
in[i] .rank = myrank;
}
MPI_Reduce( in, out, 30, MPI_DOUBLE_INT, MPI_MAXLOC, root, comm );
/* At this point, the answer resides on process root
*/
if (myrank == root) {
/* read ranks out
*/
for (i=0; i<30; ++i) {
aout[i] = out[i] .val;
ind[i] = out[i].rank;

Example 5.18 Same example, in Fortran.

! each process has an array of 30 double: ain(30)

DOUBLE PRECISION ain(30), aout(30)
INTEGER ind(30)

DOUBLE PRECISION in(2,30), out(2,30)
INTEGER i, myrank, root, ierr

CALL MPI_COMM_RANK(comm, myrank, ierr)

DO I=1, 30

in(1,i) = ain(i)

in(2,1i) = myrank | myrank is coerced to a double
END DO

CALL MPI_REDUCE( in, out, 30, MPI_2DOUBLE_PRECISION, MPI_MAXLOC, root,
comm, ierr )
! At this point, the answer resides on process root

IF (myrank .EQ. root) THEN
! read ranks out

DO I= 1, 30
aout(i) = out(1,1)
ind(i) = out(2,i) ! rank is coerced back to an integer
END DO
END IF

Example 5.19 Each process has a non-empty array of values. Find the minimum global
value, the rank of the process that holds it and its index on this process.
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#define LEN 1000

float val[LEN]; /* local array of values */
int count; /* local number of values */
int myrank, minrank, minindex;

float minval;

struct {
float value;
int index;
} in, out;

/* local minloc */
in.value = vall[0];
in.index = 0;
for (i=1; i < count; i++)
if (in.value > vall[i]) {
in.value = vall[il;
in.index = 1i;

/* global minloc */
MPI_Comm_rank(comm, &myrank) ;
in.index = myrank*LEN + in.index;
MPI_Reduce( in, out, 1, MPI_FLOAT_INT, MPI_MINLOC, root, comm );
/* At this point, the answer resides on process root
*/
if (myrank == root) {
/* read answer out
*/
minval = out.value;
minrank = out.index / LEN;
minindex = out.index % LEN;

Rationale. The definition of MPI_MINLOC and MPI_MAXLOC given here has the
advantage that it does not require any special-case handling of these two operations:
they are handled like any other reduce operation. A programmer can provide his or
her own definition of MPI_MAXLOC and MPI_MINLOC, if so desired. The disadvantage
is that values and indices have to be first interleaved, and that indices and values have
to be coerced to the same type, in Fortran. (End of rationale.)
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5.9.5 User-Defined Reduction Operations

MPI_OP_CREATE(function, commute, op)

IN function user defined function (function)
IN commute true if commutative; false otherwise.
ouT op operation (handle)

int MPI_Op_create(MPI_User_function *function, int commute, MPI_Op *op)

MPI_QP_CREATE( FUNCTION, COMMUTE, 0P, IERROR)
EXTERNAL FUNCTION
LOGICAL COMMUTE
INTEGER 0P, IERROR

void MPI::0Op::Init(MPI::User_function* function, bool commute)

MPI_OP_CREATE binds a user-defined global operation to an op handle that can sub-
sequently be used in MPI_REDUCE, MPI_ALLREDUCE, MPI_REDUCE_SCATTER,
MPI_SCAN, and MPI_EXSCAN. The user-defined operation is assumed to be associative.
If commute = true, then the operation should be both commutative and associative. If
commute = false, then the order of operands is fixed and is defined to be in ascending,
process rank order, beginning with process zero. The order of evaluation can be changed,
talking advantage of the associativity of the operation. If commute = true then the order
of evaluation can be changed, taking advantage of commutativity and associativity.

function is the user-defined function, which must have the following four arguments:
invec, inoutvec, len and datatype.

The ISO C prototype for the function is the following.
typedef void MPI_User_function(void *invec, void *inoutvec, int *len,

MPI_Datatype *datatype);

The Fortran declaration of the user-defined function appears below.
SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, TYPE)

<type> INVEC(LEN), INOUTVEC(LEN)

INTEGER LEN, TYPE

The C++ declaration of the user-defined function appears below.
typedef void MPI::User_function(const void* invec, void *inoutvec, int len,
const Datatype& datatype);

The datatype argument is a handle to the data type that was passed into the call to
MPI_REDUCE. The user reduce function should be written such that the following holds:
Let u[0], ... , u[len-1] be the len elements in the communication buffer described by the
arguments invec, len and datatype when the function is invoked; let v[0], ... , v[len-1] be len
elements in the communication buffer described by the arguments inoutvec, len and datatype
when the function is invoked; let w[0], ... , w[len-1] be len elements in the communication
buffer described by the arguments inoutvec, len and datatype when the function returns;
then w[i] = uliJov][i], for i=0, ... , len-1, where o is the reduce operation that the function
computes.
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Informally, we can think of invec and inoutvec as arrays of len elements that function
is combining. The result of the reduction over-writes values in inoutvec, hence the name.
Each invocation of the function results in the pointwise evaluation of the reduce operator
on len elements: L.e, the function returns in inoutvec[i] the value invec]i] o inoutvec]i], for
i=0,...,count — 1, where o is the combining operation computed by the function.

Rationale. The len argument allows MPI_REDUCE to avoid calling the function for
each element in the input buffer. Rather, the system can choose to apply the function
to chunks of input. In C, it is passed in as a reference for reasons of compatibility
with Fortran.

By internally comparing the value of the datatype argument to known, global handles,
it is possible to overload the use of a single user-defined function for several, different
data types. (End of rationale.)

General datatypes may be passed to the user function. However, use of datatypes that
are not contiguous is likely to lead to inefficiencies.

No MPI communication function may be called inside the user function. MPI_ABORT
may be called inside the function in case of an error.

Advice to users. Suppose one defines a library of user-defined reduce functions that
are overloaded: the datatype argument is used to select the right execution path at each
invocation, according to the types of the operands. The user-defined reduce function
cannot “decode” the datatype argument that it is passed, and cannot identify, by itself,
the correspondence between the datatype handles and the datatype they represent.
This correspondence was established when the datatypes were created. Before the
library is used, a library initialization preamble must be executed. This preamble
code will define the datatypes that are used by the library, and store handles to these
datatypes in global, static variables that are shared by the user code and the library
code.

The Fortran version of MPI_REDUCE will invoke a user-defined reduce function using
the Fortran calling conventions and will pass a Fortran-type datatype argument; the
C version will use C calling convention and the C representation of a datatype handle.
Users who plan to mix languages should define their reduction functions accordingly.
(End of advice to users.)

Advice to implementors. We outline below a naive and inefficient implementation of
MPI_REDUCE not supporting the “in place” option.

MPI_Comm_size(comm, &groupsize);
MPI_Comm_rank(comm, &rank);
if (rank > 0) {
MPI_Recv(tempbuf, count, datatype, rank-1,...);
User_reduce (tempbuf, sendbuf, count, datatype);

}
if (rank < groupsize-1) {

MPI_Send(sendbuf, count, datatype, rank+l, ...);
}

/* answer now resides in process groupsize-1 ... now send to root
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*/
if (rank == root) {
MPI_Irecv(recvbuf, count, datatype, groupsize-1,..., &req);

}
if (rank == groupsize-1) {

MPI_Send(sendbuf, count, datatype, root, ...);
}

if (rank == root) {
MPI_Wait(&req, &status);

The reduction computation proceeds, sequentially, from process 0 to process

groupsize-1. This order is chosen so as to respect the order of a possibly non-
commutative operator defined by the function User_reduce(). A more efficient im-
plementation is achieved by taking advantage of associativity and using a logarithmic
tree reduction. Commutativity can be used to advantage, for those cases in which
the commute argument to MPI_OP_CREATE is true. Also, the amount of temporary
buffer required can be reduced, and communication can be pipelined with computa-
tion, by transferring and reducing the elements in chunks of size len <count.

The predefined reduce operations can be implemented as a library of user-defined
operations. However, better performance might be achieved if MPI_REDUCE handles
these functions as a special case. (End of advice to implementors.)

MPI_OP_FREE( op)
INOUT  op operation (handle)

int MPI_op_free( MPI_Op *op)

MPI_OP_FREE( OP, IERROR)
INTEGER 0P, IERROR

void MPI::0p::Free()

Marks a user-defined reduction operation for deallocation and sets op to MPI_OP_NULL.

Example of User-defined Reduce

It is time for an example of user-defined reduction. The example in this section uses an
intracommunicator.

Example 5.20 Compute the product of an array of complex numbers, in C.
typedef struct {
double real,imag;

} Complex;

/* the user-defined function
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*/
void myProd( Complex *in, Complex *inout, int *len, MPI_Datatype *dptr )
{
int i;
Complex c;

for (i=0; i< *len; ++i) {
c.real = inout->real*in->real -

inout->imag*in->imag;
c.imag = inout->real*in->imag +

inout->imag*in->real;
*inout = c;
in++; inout++;

/* and, to call it...
*/

/* each process has an array of 100 Complexes

x/
Complex a[100], answer[100];
MPI_Op myOp;

MPI_Datatype ctype;

/* explain to MPI how type Complex is defined
*/
MPI_Type_contiguous( 2, MPI_DOUBLE, &ctype );
MPI_Type_commit( &ctype );
/* create the complex-product user-op
*/
MPI_Op_create( myProd, True, &myOp );

MPI_Reduce( a, answer, 100, ctype, myOp, root, comm ) ;

/* At this point, the answer, which consists of 100 Complexes,
* resides on process root

*/

5.9.6 All-Reduce

MPI includes a variant of the reduce operations where the result is returned to all processes
in a group. MPI requires that all processes from the same group participating in these
operations receive identical results.
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MPI_ALLREDUCE( sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

ouT recvbuf starting address of receive buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype data type of elements of send buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

int MPI_Allreduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

MPI_ALLREDUCE (SENDBUF, RECVBUF, COUNT, DATATYPE, 0P, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (*)
INTEGER COUNT, DATATYPE, 0P, COMM, IERROR

void MPI::Comm::Allreduce(const void* sendbuf, void* recvbuf, int count,
const MPI::Datatype& datatype, const MPI::0p& op) const = O

If comm is an intracommunicator, MPI_ALLREDUCE behaves the same as
MPI_REDUCE except that the result appears in the receive buffer of all the group members.

Advice to implementors.  The all-reduce operations can be implemented as a re-
duce, followed by a broadcast. However, a direct implementation can lead to better
performance. (End of advice to implementors.)

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at all processes. In this case, the input data is taken
at each process from the receive buffer, where it will be replaced by the output data.

If comm is an intercommunicator, then the result of the reduction of the data provided
by processes in group A is stored at each process in group B, and vice versa. Both groups
should provide count and datatype arguments that specify the same type signature.

The following example uses an intracommunicator.

Example 5.21 A routine that computes the product of a vector and an array that are

distributed across a group of processes and returns the answer at all nodes (see also Example
5.16).

SUBROUTINE PAR_BLAS2(m, n, a, b, ¢, comm)

REAL a(m), b(m,n) I local slice of array
REAL c(n) | result
REAL sum(n)

INTEGER n, comm, i, j, ierr

I local sum

DO j=1, n
sum(j) = 0.0
DOi=1, m
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sum(j) = sum(j) + a(i)*b(i,j)
END DO
END DO

I global sum
CALL MPI_ALLREDUCE(sum, c, n, MPI_REAL, MPI_SUM, comm, ierr)

| return result at all nodes
RETURN

5.10 Reduce-Scatter

MPI includes a variant of the reduce operations where the result is scattered to all processes
in a group on return.

MPI_REDUCE_SCATTER( sendbuf, recvbuf, recvcounts, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)
ouT recvbuf starting address of receive buffer (choice)
IN recvcounts non-negative integer array specifying the number of

elements in result distributed to each process. Array
must be identical on all calling processes.

IN datatype data type of elements of input buffer (handle)
IN op operation (handle)
IN comm communicator (handle)

int MPI_Reduce_scatter(void* sendbuf, void* recvbuf, int *recvcounts,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

MPI_REDUCE_SCATTER (SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,
IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR

void MPI::Comm: :Reduce_scatter(const void* sendbuf, void* recvbuf,
int recvcounts[], const MPI::Datatype& datatype,
const MPI::0p& op) const = O

If comm is an intracommunicator, MPI_REDUCE_SCATTER first does an element-wise
reduction on vector of count = Y~ recvcounts|i] elements in the send buffer defined by
sendbuf, count and datatype. Next, the resulting vector of results is split into n disjoint
segments, where n is the number of members in the group. Segment i contains recvcounts]i]
elements. The i-th segment is sent to process i and stored in the receive buffer defined by
recvbuf, recvcounts[i] and datatype.

Advice to implementors. The MPI_REDUCE_SCATTER routine is functionally equiv-
alent to: an MPI_REDUCE collective operation with count equal to the sum of
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recvcounts[i] followed by MPI_SCATTERYV with sendcounts equal to recvcounts. How-
ever, a direct implementation may run faster. (End of advice to implementors.)

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE
in the sendbuf argument. In this case, the input data is taken from the top of the receive
buffer.

If comm is an intercommunicator, then the result of the reduction of the data provided
by processes in group A is scattered among processes in group B, and vice versa. Within each
group, all processes provide the same recvcounts argument, and the sum of the recvcounts
entries should be the same for the two groups.

Rationale. The last restriction is needed so that the length of the send buffer can be
determined by the sum of the local recvcounts entries. Otherwise, a communication
is needed to figure out how many elements are reduced. (End of rationale.)

5.11 Scan

5.11.1 Inclusive Scan

MPI_SCAN( sendbuf, recvbuf, count, datatype, op, comm )

IN sendbuf starting address of send buffer (choice)

ouT recvbuf starting address of receive buffer (choice)

IN count number of elements in input buffer (non-negative in-
teger)

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

int MPI_Scan(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm )

MPI_SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF (%), RECVBUF (*)
INTEGER COUNT, DATATYPE, 0P, COMM, IERROR

void MPI::Intracomm::Scan(const void* sendbuf, void* recvbuf, int count,
const MPI::Datatype& datatype, const MPI::0p& op) const

If comm is an intracommunicator, MPI_SCAN is used to perform a prefix reduction
on data distributed across the group. The operation returns, in the receive buffer of the
process with rank i, the reduction of the values in the send buffers of processes with ranks
0,...,1 (inclusive). The type of operations supported, their semantics, and the constraints
on send and receive buffers are as for MPI_REDUCE.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE in
the sendbuf argument. In this case, the input data is taken from the receive buffer, and
replaced by the output data.
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This operation is invalid for intercommunicators.

5.11.2 Exclusive Scan

MPI_EXSCAN(sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

ouT recvbuf starting address of receive buffer (choice)

IN count number of elements in input buffer (non-negative in-
teger)

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm intracommunicator (handle)

int MPI_Exscan(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

MPI_EXSCAN (SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (*)
INTEGER COUNT, DATATYPE, 0P, COMM, IERROR

void MPI::Intracomm: :Exscan(const void* sendbuf, void* recvbuf, int count,
const MPI::Datatype& datatype, const MPI::0p& op) const

If comm is an intracommunicator, MPI_EXSCAN is used to perform a prefix reduction
on data distributed across the group. The value in recvbuf on the process with rank 0 is
undefined, and recvbuf is not signficant on process 0. The value in recvbuf on the process
with rank 1 is defined as the value in sendbuf on the process with rank 0. For processes
with rank ¢ > 1, the operation returns, in the receive buffer of the process with rank ¢, the
reduction of the values in the send buffers of processes with ranks 0,...,7 — 1 (inclusive).
The type of operations supported, their semantics, and the constraints on send and receive
buffers, are as for MPI_REDUCE.

No “in place” option is supported.

This operation is invalid for intercommunicators.

Advice to users. As for MPI_SCAN, MPI does not specify which processes may call
the operation, only that the result be correctly computed. In particular, note that
the process with rank 1 need not call the MPI_0Op, since all it needs to do is to receive
the value from the process with rank 0. However, all processes, even the processes
with ranks zero and one, must provide the same op. (End of advice to users.)

Rationale. The exclusive scan is more general than the inclusive scan. Any inclusive
scan operation can be achieved by using the exclusive scan and then locally combining
the local contribution. Note that for non-invertable operations such as MPI_MAX, the
exclusive scan cannot be computed with the inclusive scan.

No in-place version is specified for MPI_EXSCAN because it is not clear what this
means for the process with rank zero. (End of rationale.)
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5.11.3 Example using MPI_SCAN

The example in this section uses an intracommunicator.

Example 5.22 This example uses a user-defined operation to produce a segmented scan.
A segmented scan takes, as input, a set of values and a set of logicals, and the logicals
delineate the various segments of the scan. For example:

values 1 V9 V3 V4 Vs V6 (%rd (%}
logicals 0 0 1 1 1 0 0 1
result V1 U1 +v2 w3 v3+v4 vV3+vg+v5 Vg Vg + U7 US

The operator that produces this effect is,

where,

{ utv ifi=j
w = e,
v ifi#j
Note that this is a non-commutative operator. C code that implements it is given
below.

typedef struct {
double val;
int log;

} SegScanPair;

/* the user-defined function
*/
void segScan( SegScanPair *in, SegScanPair *inout, int *len,
MPI_Datatype *dptr )

{
int i;
SegScanPair c;
for (i=0; i< *len; ++i) {
if ( in->log == inout->log )
c.val = in->val + inout->val;
else
c.val = inout->val;
c.log = inout->log;
*inout = c;
in++; inout++;
}
}

Note that the inout argument to the user-defined function corresponds to the right-
hand operand of the operator. When using this operator, we must be careful to specify that
it is non-commutative, as in the following.
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int i,base;
SeqScanPair a, answer;

MPI_Op my0Op;

MPI_Datatype type[2] = {MPI_DOUBLE, MPI_INT};
MPI_Aint disp[2];

int blocklen[2] = { 1, 13};

MPI_Datatype sspair;

/* explain to MPI how type SegScanPair is defined
*/
MPI_Address( a, disp);
MPI_Address( a.log, disp+1);
base = disp[0];
for (i=0; i<2; ++i) disp[i] -= base;
MPI_Type_struct( 2, blocklen, disp, type, &sspair );
MPI_Type_commit ( &sspair );
/* create the segmented-scan user-op
*/
MPI_Op_create( segScan, 0, &myOp );

MPI_Scan( a, answer, 1, sspair, myOp, comm );

5.12  Nonblocking Collective Operations

As described in Chapter ?? (Section 3.7), the performance of many systems can be im-
proved by overlapping communication and computation. Nonblocking collective operations
combine the potential to utilize overlap and avoid synchronization of nonblocking point-to-
point operations with the optimized implementation and message scheduling of collective
operations [1, 4]. One way of doing this would be to perform the collective operation in
a separate thread. An alternative mechanism that often leads to better performance (i.e.,
avoids context switching and scheduler overheads and thread management [2]) is the use of
nonblocking collective communication. The model is similar to point-to-point communica-
tions ?? (Section 3). A nonblocking start call is used to initiate a collective communication
which is eventually completed by a separate call. As in the nonblocking point-to-point case,
the communication may progress independently of the computations at all participating pro-
cesses. Nomnblocking collective communication can also be used to mitigate synchronizing
effects of collective operations by running them in the “background”.

As in the point-to-point case, all start calls are local and return immediately with
a request handle 7?7 (Section 3.7.1), irrespective of the status of other processes. Multiple
nonblocking collective communications can be outstanding on a single communicator. If the
call causes some system resource to be exhausted, then it will fail and return an error code.
Quality implementations of MPI should ensure that this happens only in “pathological”
cases. That is, an MPI implementation should be able to support a large number of pending
nonblocking operations.

A nonblocking collective call indicates that the system may start copying data out of the
send buffer and into the receive buffer. All associated buffers should not be accessed between
the initiation and the completion of a nonblocking collective operation. Collective operations
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complete locally when the local part of the operation has been performed (i.e., the semantics
of the collective operation are guaranteed) and all buffers can be accessed. Similarly to the
blocking case, completion does not imply that other processes have completed or even
started the operation. However, calling blocking completion functions (e.g., MPI_WAIT)
may synchronize the calling processes.

Advice to implementors. The nonblocking interface allows the user to specify over-
lapping communication and computation. High-quality MPI implementations should
support the user by asynchronously progressing outstanding communications. (End
of advice to implementors.)

All request test and wait functions (MPI_{WAIT, TEST }{,ANY,SOME,ALL}) described
in Section 7?7 (Section 3.7.3) are supported for nonblocking collective communications.
MPI_REQUEST_FREE is not supported.

Rationale. After an active receive request was freed, there is no way to verify
that the operation is completed and the receive buffer can be used 7?7 (page 55:22-
23). Collective communications have send and receive semantics and thus, freeing a
request is not useful. (End of rationale.)

MPI_CANCEL is not supported. Collective operations do not have a tag argument.

Rationale. Not having tags for collective operations simplifies the implementation
(especially for hardware-supported optimizations) and is consistent to blocking point-
to-point operations. (End of rationale.)

Advice to implementors. Nonblocking collective operations can be implemented
with local execution schedules [3] using normal point-to-point communication and a
reserved tag-space. (End of advice to implementors.)

All processes must call collective operations (blocking and nonblocking) in the same
order. In particular, if some process calls a collective operation, all other processes in the
communicator must eventually call the same collective operation, and no other collective
operation in between. This is consistent with the ordering rules for blocking collective op-
erations in threaded environments. Progression rules for nonblocking collectives are similar
to progression of nonblocking point-to-point operations, refer to ?? (Section 3.7.4).

Rationale.  Matching blocking and nonblocking collectives is not allowed because
the implementation might use different communication algorithms for the two cases.
Blocking collectives only need to be optimized for their running time while nonblocking
collectives have to find an equilibrium between time to completion, CPU overhead and
asynchronous progression. (End of rationale.)

Advice to users. If blocking semantics are required on some processes of the commu-
nicator, then the user can use a nonblocking collective immediately followed by a call
to wait in order to emulate blocking behavior. (End of advice to users.)

Status objects that are passed to MPI_{WAIT, TEST }{,ANY,SOME,ALL} will be ignored
by the library (remain unchanged) if the request is associated to a nonblocking collective
routine.

Advice to users. The user is encouraged to pass MPI_STATUS{ES}_IGNORE as status
object to all requests of nonblocking collective routines. (End of advice to users.)
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5.12.1 Nonblocking Barrier Synchronization

MPI_IBARRIER( comm , request )
IN comm communicator (handle)

ouT request communication request (handle)

int MPI_Ibarrier (MPI_Comm comm, MPI_Request *request )

MPI_TBARRIER(COMM, REQUEST, IERROR)
INTEGER COMM, REQUEST, IERROR

MPI::Request MPI::Comm::Ibarrier() const = 0

This operation starts a nonblocking barrier. The process synchronization after the
operation completes is identical as after a call to the blocking MPI_BARRIER.

Advice to users. A nonblocking barrier can be used to hide latency. Moving indepen-
dent computations between the MPI_IBARRIER and the subsequent completion call
can overlap the barrier latency and therefore shorten possible waiting times. The se-
mantic properties are also useful when mixing collectives and point-to-point messages.
(End of advice to users.)

5.12.2 Nonblocking Broadcast

MPI_IBCAST( buffer, count, datatype, root, comm, request )

INOUT buffer starting address of buffer (choice)

IN count number of entries in buffer (non-negative integer)
IN datatype data type of buffer (handle)

IN root rank of broadcast root (integer)

IN comm communicator (handle)

ouT request communication request (handle)

int MPI_Ibcast(void* buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm, MPI_Request *request )

MPI_IBCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR)
<type> BUFFER(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR

MPI::Request MPI::Comm::Ibcast(void* buffer, int count,
const MPI::Datatype& datatype, int root) const = O

This operation starts a nonblocking broadcast. The data placements after the operation
completes are identical as after a call to the blocking MPI_BCAST.
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Example using MPI_IBCAST

The example in this section uses intracommunicators.

Example 5.23 Start a broadcast of 100 ints from process 0 to every process in the group,
perform some computation on independent data, and then complete the outstanding broad-
cast operation.

MPI_Comm comm;

int array1[100], array2[100];
int root=0;

MPI_Request req;

MPI_Ibcast( arrayl, 100, MPI_INT, root, comm, &req );
compute (array2, 100);
MPI_Wait(&req, MPI_STATUS_IGNORE) ;

As in many of our example code fragments, we assume that some of the variables (such as
comm in the above) have been assigned appropriate values.

5.12.3 Nonblocking Gather

MPI_IGATHER( sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, re-
quest)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice, significant only at
root)

IN recvcount number of elements for any single receive (non-negative

integer, significant only at root)

IN recvtype data type of recv buffer elements (significant only at
root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

ouT request communication request (handle)

int MPI_Igather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm, MPI_Request *request)

MPI_IGATHER (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, REQUEST, IERROR)
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<type> SENDBUF (*), RECVBUF (%)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST,

TIERROR

MPI::Request MPI::Comm::Igather(const void* sendbuf, int sendcount, const
MPI::Datatype& sendtype, void* recvbuf, int recvcount,
const MPI::Datatype& recvtype, int root) const = O

This operation starts a nonblocking gather. The data placements after the operation

completes are identical as after a call to the blocking MPI_GATHER.

MPI_IGATHERV( sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root,
comm, request)

IN sendbuf
IN sendcount
IN sendtype
ouT recvbuf

IN recvcounts
IN displs

IN recvtype
IN root

IN comm

ouT request

starting address of send buffer (choice)

number of elements in send buffer (non-negative inte-
ger)
data type of send buffer elements (handle)

address of receive buffer (choice, significant only at
root)

non-negative integer array (of length group size) con-
taining the number of elements that are received from
each process (significant only at root)

integer array (of length group size). Entry i specifies
the displacement relative to recvbuf at which to place
the incoming data from process i (significant only at
root)

data type of recv buffer elements (significant only at
root) (handle)

rank of receiving process (integer)
communicator (handle)

communication request (handle)

int MPI_Igatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int *recvcounts, int *displs,
MPI_Datatype recvtype, int root, MPI_Comm comm,

MPI_Request *request)

MPI_IGATHERV (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, ROOT, COMM, REQUEST, IERROR)

<type> SENDBUF (*), RECVBUF (%)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,

COMM, REQUEST, IERROR

MPI::Request MPI::Comm::Igatherv(const void* sendbuf, int sendcount, const
MPI::Datatype& sendtype, void* recvbuf,
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const int recvcounts[], const int displsl[],
const MPI::Datatype& recvtype, int root) const = O

MPI_IGATHERV extends the functionality of MPI_IGATHER by allowing a varying
count of data from each process. The memory movement after completion is identical
as for MPI_GATHERV.

5.12.4 Nonblocking Scatter

MPI_ISCATTER( sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm,
request)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcount number of elements sent to each process (non-negative
integer, significant only at root)

IN sendtype data type of send buffer elements (significant only at
root) (handle)

ouT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-
teger)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

ouT request communication request (handle)

int MPI_TIscatter(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,
MPI_Comm comm, MPI_Request *request)

MPI_ISCATTER (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
ROOT, COMM, REQUEST, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST,
IERROR

MPI::Request MPI::Comm::Iscatter(const void* sendbuf, int sendcount, const
MPI: :Datatype& sendtype, void* recvbuf, int recvcount,
const MPI::Datatype& recvtype, int root) const = O

MPI_ISCATTER starts the reverse data movement as MPI_IGATHER. The data move-
ment performed is equivalent to MPI_SCATTER.

MPI_ISCATTERV( sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root,
comm, request)

IN sendbuf address of send buffer (choice, significant only at root)
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IN

IN
ouT
IN

IN
IN
IN
ouT

sendcounts

displs

sendtype
recvbuf

recvcount

recvtype
root
comm

request

non-negative integer array (of length group size) speci-
fying the number of elements to send to each processor

integer array (of length group size). Entry i specifies
the displacement (relative to sendbuf) from which to
take the outgoing data to process i

data type of send buffer elements (handle)
address of receive buffer (choice)

number of elements in receive buffer (non-negative in-
teger)

data type of receive buffer elements (handle)
rank of sending process (integer)
communicator (handle)

communication request (handle)

int MPI_Iscatterv(void* sendbuf, int *sendcounts, int *displs,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm,

MPI_Request *request)

MPI_TISCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, ROOT, COMM, REQUEST, IERROR)

<type> SENDBUF (%), RECVBUF (*)

INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,

COMM, REQUEST, IERROR

MPI::Request MPI::Comm::Iscatterv(const void* sendbuf,

const int sendcounts[], const int displs[],

const MPI::Datatype& sendtype, void* recvbuf, int recvcount,
const MPI::Datatype& recvtype, int root) const = 0

MPI_ISCATTERV starts the reverse data movement as MPI_IGATHERV. The data
movement performed is equivalent to MPI_SCATTERV.
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5.12.5 Nonblocking Gather-to-all

MPI_IALLGATHER( sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, re-
quest)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-

negative integer)

IN recvtype data type of receive buffer elements (handle)
IN comm communicator (handle)
ouT request communication request (handle)

int MPI_Tallgather(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm, MPI_Request *request)

MPI_IALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, REQUEST, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

MPI::Request MPI::Comm::Iallgather(const void* sendbuf, int sendcount,
const MPI::Datatype& sendtype, void* recvbuf, int recvcount,
const MPI::Datatype& recvtype) const = 0

The data movement after an MPI_IALLGATHER operation completes is identical to
MPI_ALLGATHER.

MPI_IALLGATHERV( sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm,
request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice)
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IN recvcounts non-negative integer array (of length group size) con-
taining the number of elements that are received from

each process

IN displs integer array (of length group size). Entry i specifies
the displacement (relative to recvbuf) at which to place

the incoming data from process i

IN recvtype data type of receive buffer elements (handle)
IN comm communicator (handle)
ouT request communication request (handle)

int MPI_Tallgatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int *recvcounts, int *displs,
MPI_Datatype recvtype, MPI_Comm comm, MPI_Request)

MPI_TALLGATHERV (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,
RECVTYPE, COMM, REQUEST, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,
REQUEST, IERROR

MPI::Request MPI::Comm::Iallgatherv(const void* sendbuf, int sendcount,
const MPI::Datatype& sendtype, void* recvbuf,
const int recvcounts[], const int displs[],
const MPI::Datatype& recvtype) const = 0

The data movement after completion of MPI_IALLGATHERYV is identical as if
MPI_ALLGATHERYV returned.
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5.12.6 Nonblocking All-to-All Scatter/Gather

MPI_IALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each process (non-negative
integer)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-

negative integer)

IN recvtype data type of receive buffer elements (handle)
IN comm communicator (handle)
ouT request communication request (handle)

int MPI_Talltoall(void* sendbuf, int sendcount, MPI_Datatype sendtype,
void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm, MPI_Request *request)

MPI_TIALLTOALL (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,
COMM, REQUEST, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

MPI::Request MPI::Comm::Ialltoall(const void* sendbuf, int sendcount, const
MPI::Datatype& sendtype, void* recvbuf, int recvcount,
const MPI::Datatype& recvtype) const = 0

The data movement after an MPI_IALLTOALL operation completes is identical to
MPI_ALLTOALL.

MPI_IALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recv-
type, comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array equal to the group size spec-
ifying the number of elements to send to each proces-
sor

IN sdispls integer array (of length group size). Entry j specifies
the displacement (relative to sendbuf) from which to
take the outgoing data destined for process j

IN sendtype data type of send buffer elements (handle)

ouT recvbuf address of receive buffer (choice)
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IN recvcounts non-negative integer array equal to the group size spec-
ifying the number of elements that can be received
from each processor
IN rdispls integer array (of length group size). Entry i specifies
the displacement (relative to recvbuf) at which to place
the incoming data from process i
IN recvtype data type of receive buffer elements (handle)
IN comm communicator (handle)
ouT request communication request (handle)
int MPI_Talltoallv(void* sendbuf, int *sendcounts, int *sdispls,

MPI_

MPI:

MPI_Datatype sendtype, void* recvbuf, int *recvcounts,
int *rdispls, MPI_Datatype recvtype, MPI_Comm comm,
MPI_Request *request)

IALLTOALLV (SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,
RDISPLS, RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF (*), RECVBUF (%)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(x),

RECVTYPE, COMM, REQUEST, IERROR

:Request MPI::Comm::Ialltoallv(const void* sendbuf,
const int sendcounts[], const int sdispls[],
const MPI::Datatype& sendtype, void* recvbuf,
const int recvcounts[], const int rdispls[],
const MPI::Datatype& recvtype) const = 0

MPI_IALLTOALLV adds flexibility to MPI_IALLTOALL in that the location of data for

the send is specified by sdispls and the location of the placement of the data on the receive
side is specified by rdispls.
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MPI_IALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recv-

types, comm, request)

IN sendbuf

IN sendcounts
IN sdispls

IN sendtypes
ouT recvbuf

IN recvcounts
IN rdispls

IN recvtypes
IN comm
ouT request

starting address of send buffer (choice)

integer array equal to the group size specifying the
number of elements to send to each processor (array
of non-negative integers)

integer array (of length group size). Entry j specifies
the displacement in bytes (relative to sendbuf) from
which to take the outgoing data destined for process
j (array of integers)

array of datatypes (of length group size). Entry j
specifies the type of data to send to process j (array
of handles)

address of receive buffer (choice)

integer array equal to the group size specifying the
number of elements that can be received from each
processor (array of non-negative integers)

integer array (of length group size). Entry i specifies
the displacement in bytes (relative to recvbuf) at which
to place the incoming data from process i (array of
integers)

array of datatypes (of length group size). Entry i
specifies the type of data received from process i (ar-
ray of handles)

communicator (handle)

communication request (handle)

int MPI_Talltoallw(void *sendbuf, int sendcounts[], int sdispls[],
MPI_Datatype sendtypes[], void *recvbuf, int recvcounts[],
int rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm,
MPI_Request *request )

MPI_TALLTOALLW (SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,
RECVCOUNTS, RDISPLS, RECVTYPES, REQUEST, COMM, IERROR)

<type> SENDBUF (*), RECVBUF (%)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(x*),
RDISPLS(*), RECVIYPES(*), COMM, REQUEST, IERROR

MPI::Request MPI::Comm::Ialltoallw(const void* sendbuf, const int
sendcounts[], const int sdispls[], const MPI::Datatype
sendtypes[], void* recvbuf, const int recvcounts[], const int
rdispls[], const MPI::Datatype recvtypes[]) const = 0

MPI_IALLTOALLW is the nonblocking variant of MPI_ALLTOALLW. It starts a non-
blocking all-to-all operation which delivers the same results as MPI_ALLTOALLW after

completion.
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5.12.7 Nonblocking Reduce

MPI_IREDUCE( sendbuf, recvbuf, count, datatype, op, root, comm, request)

IN sendbuf address of send buffer (choice)

ouT recvbuf address of receive buffer (choice, significant only at
root)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype data type of elements of send buffer (handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

ouT request communication request (handle)

int MPI_Ireduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm,
MPI_Request *request)

MPI_IREDUCE (SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, REQUEST,
IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, REQUEST, IERROR

MPI::Request MPI::Comm::Ireduce(const void* sendbuf, void* recvbuf,
int count, const MPI::Datatype& datatype, const MPI::0p& op,
int root) comnst = 0

MPI_IREDUCE is the nonblocking variant of MPI_REDUCE. It starts a nonblocking
reduction operation which delivers the same results as MPI_REDUCE after completion.

Advice to implementors. It is strongly recommended that MPI_IREDUCE is imple-
mented so that the same result is obtained whenever the function is applied on the
same arguments, appearing in the same order. Note that this may prevent optimiza-
tions that take advantage of the physical location of processors. (End of advice to
implementors.)

5.12.8 Nonblocking All-Reduce

MPI includes a variant of the reduce operations where the result is returned to all processes
in a group. MPI requires that all processes from the same group participating in these
operations receive identical results.
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MPI_IALLREDUCE( sendbuf, recvbuf, count, datatype, op, comm, request)

IN
ouT
IN

IN
IN
IN
ouT

sendbuf
recvbuf

count

datatype
op
comm

request

starting address of send buffer (choice)

starting address of receive buffer (choice)

number of elements in send buffer (non-negative inte-
ger)

data type of elements of send buffer (handle)
operation (handle)

communicator (handle)

communication request (handle)

int MPI_Iallreduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,

MPI_Request *request)

MPI_TALLREDUCE (SENDBUF, RECVBUF, COUNT, DATATYPE, 0P, COMM, REQUEST,

IERROR)
<type> SENDBUF (*), RECVBUF (%)

INTEGER COUNT, DATATYPE, 0P, COMM, REQUEST, IERROR

MPI::Request MPI::Comm::Iallreduce(const void* sendbuf, void* recvbuf,
int count, const MPI::Datatype& datatype, const MPI::0p& op)

const

MPI_IALLREDUCE is the nonblocking variant of MPI_ALLREDUCE. It starts a non-
blocking reduction-to-all operation which delivers the same results as MPI_ALLREDUCE
after completion.

5.12.9 Nonblocking Reduce-Scatter

MPI_IREDUCE_SCATTER( sendbuf, recvbuf, recvcounts, datatype, op, comm, request)

IN
ouT
IN

IN
IN
IN
ouT

sendbuf
recvbuf

recvcounts

datatype
op
comm

request

starting address of send buffer (choice)
starting address of receive buffer (choice)

non-negative integer array specifying the number of
elements in result distributed to each process. Array
must be identical on all calling processes.

data type of elements of input buffer (handle)
operation (handle)
communicator (handle)

communication request (handle)

int MPI_Ireduce_scatter(void* sendbuf, void* recvbuf, int *recvcounts,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,

MPI_Request *request)
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MPI_IREDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,
REQUEST, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, REQUEST, IERROR

MPI::Request MPI::Comm::Ireduce_scatter(const void* sendbuf, void* recvbuf,
int recvcounts[], const MPI::Datatype& datatype,
const MPI::0p& op) const = O

MPI_IREDUCE_SCATTER is the nonblocking variant of MPI_REDUCE_SCATTER. It
starts a nonblocking reduce-scatter operation which delivers the same results as
MPI_REDUCE_SCATTER after completion.

5.12.10 Nonblocking Inclusive Scan

MPI_ISCAN( sendbuf, recvbuf, count, datatype, op, comm, request )

IN sendbuf starting address of send buffer (choice)

ouT recvbuf starting address of receive buffer (choice)

IN count number of elements in input buffer (non-negative in-
teger)

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

ouT request communication request (handle)

int MPI_Iscan(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
MPI_Request *request )

MPI_ISCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR)
<type> SENDBUF (*), RECVBUF (*)
INTEGER COUNT, DATATYPE, 0P, COMM, REQUEST, IERROR

MPI::Request MPI::Intracomm::Iscan(const void* sendbuf, void* recvbuf,
int count, const MPI::Datatype& datatype, const MPI::0p& op)
const

MPI_ISCAN is the nonblocking variant of MPI_SCAN. It starts a nonblocking scan
operation which delivers the same results as MPI_SCAN after completion.

5.12.11 Nonblocking Exclusive Scan
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MPI_IEXSCAN(sendbuf, recvbuf, count, datatype, op, comm, request)

IN sendbuf starting address of send buffer (choice)

ouT recvbuf starting address of receive buffer (choice)

IN count number of elements in input buffer (non-negative in-
teger)

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm intracommunicator (handle)

ouT request communication request (handle)

int MPI_Iexscan(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,
MPI_Request *request)

MPI_TIEXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, 0P, COMM, REQUEST, IERROR)
<type> SENDBUF (%), RECVBUF (*)
INTEGER COUNT, DATATYPE, 0P, COMM, REQUEST, IERROR

MPI::Request MPI::Intracomm::Iexscan(const void* sendbuf, void* recvbuf,
int count, const MPI::Datatype& datatype, const MPI::0p& op)
const

MPI_IEXSCAN is the nonblocking variant of MPI_EXSCAN. It starts a nonblocking
exclusive scan operation which delivers the same results as MPI_EXSCAN after completion.

5.13 Correctness

A correct, portable program must invoke collective communications so that deadlock will not
occur, whether collective communications are synchronizing or not. The following examples
illustrate dangerous use of collective routines on intracommunicators.

Example 5.24 The following is erroneous.

switch(rank) {
case O:
MPI_Bcast(bufl, count, type, 0, comm);
MPI_Bcast(buf2, count, type, 1, comm);
break;
case 1:
MPI_Bcast(buf2, count, type, 1, comm);
MPI_Bcast(bufl, count, type, 0, comm);
break;

We assume that the group of comm is {0,1}. Two processes execute two broadcast
operations in reverse order. If the operation is synchronizing then a deadlock will occur.

Collective operations must be executed in the same order at all members of the com-
munication group.
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Example 5.25 The following is erroneous.

switch(rank) {
case O:
MPI_Bcast(bufl, count, type, 0, commO);
MPI_Bcast(buf2, count, type, 2, comm2);
break;
case 1:
MPI_Bcast(bufl, count, type, 1, comml);
MPI_Bcast(buf2, count, type, O, commO);
break;
case 2:
MPI_Bcast(bufl, count, type, 2, comm2);
MPI_Bcast(buf2, count, type, 1, comml);
break;

Assume that the group of commO is {0,1}, of comm1 is {1, 2} and of comm2 is {2,0}. If
the broadcast is a synchronizing operation, then there is a cyclic dependency: the broadcast
in comm2 completes only after the broadcast in comm0; the broadcast in comm0 completes
only after the broadcast in comml; and the broadcast in comml completes only after the
broadcast in comm2. Thus, the code will deadlock.

Collective operations must be executed in an order so that no cyclic dependences occur.

Example 5.26 The following is erroneous.

switch(rank) {

case O:
MPI_Bcast(bufl, count, type, 0, comm);
MPI_Send(buf2, count, type, 1, tag, comm);
break;

case 1:
MPI_Recv(buf2, count, type, O, tag, comm, status);
MPI_Bcast(bufl, count, type, 0, comm);
break;

Process zero executes a broadcast, followed by a blocking send operation. Process one
first executes a blocking receive that matches the send, followed by broadcast call that
matches the broadcast of process zero. This program may deadlock. The broadcast call on
process zero may block until process one executes the matching broadcast call, so that the
send is not executed. Process one will definitely block on the receive and so, in this case,
never executes the broadcast.

The relative order of execution of collective operations and point-to-point operations
should be such, so that even if the collective operations and the point-to-point operations
are synchronizing, no deadlock will occur.

Example 5.27 An unsafe, non-deterministic program.
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switch(rank) {

case O:
MPI_Bcast(bufl, count, type, 0, comm);
MPI_Send(buf2, count, type, 1, tag, comm);
break;

case 1:
MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);
MPI_Bcast(bufl, count, type, 0, comm);
MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);
break;

case 2:
MPI_Send(buf2, count, type, 1, tag, comm);
MPI_Bcast(bufl, count, type, 0, comm);
break;

All three processes participate in a broadcast. Process 0 sends a message to process
1 after the broadcast, and process 2 sends a message to process 1 before the broadcast.
Process 1 receives before and after the broadcast, with a wildcard source argument.

Two possible executions of this program, with different matchings of sends and receives,
are illustrated in Figure 5.12. Note that the second execution has the peculiar effect that
a send executed after the broadcast is received at another node before the broadcast. This
example illustrates the fact that one should not rely on collective communication functions
to have particular synchronization effects. A program that works correctly only when the
first execution occurs (only when broadcast is synchronizing) is erroneous.

Finally, in multithreaded implementations, one can have more than one, concurrently
executing, collective communication call at a process. In these situations, it is the user’s re-
sponsibility to ensure that the same communicator is not used concurrently by two different
collective communication calls at the same process.

Advice to implementors. Assume that broadcast is implemented using point-to-point
MPI communication. Suppose the following two rules are followed.

1. All receives specify their source explicitly (no wildcards).

2. Each process sends all messages that pertain to one collective call before sending
any message that pertain to a subsequent collective call.

Then, messages belonging to successive broadcasts cannot be confused, as the order
of point-to-point messages is preserved.

It is the implementor’s responsibility to ensure that point-to-point messages are not
confused with collective messages. One way to accomplish this is, whenever a commu-
nicator is created, to also create a “hidden communicator” for collective communica-
tion. One could achieve a similar effect more cheaply, for example, by using a hidden
tag or context bit to indicate whether the communicator is used for point-to-point or
collective communication. (End of advice to implementors.)
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First Execution 1
2

process: 0 1 2
3
match 4

recv send
5

broadcast broadcast broadcast

match
send ——— = recv

10

Second Execution 11
12
13
14
broadcast
match 15
send recv
16
broadcast
17
match
recv send 18
broadcast 19

20
Figure 5.12: A race condition causes non-deterministic matching of sends and receives. One

cannot rely on synchronization from a broadcast to make the program deterministic.

21

22

23

Example 5.28 Blocking and nonblocking collective operations can be mixed, i.e., a block- 24
ing collective operation can be posted even if there is a nonblocking collective operation 25
outstanding. 26

27
MPI_Request req; 28

29
MPI_Ibarrier(comm, &req); 30
MPI_Bcast(bufl, count, type, 0, comm); 31
MPI_Wait(&req, MPI_STATUS_IGNORE); 32

33
Each process starts a nonblocking barrier operation, participates in a blocking broad-

cast and then waits after every other process started the barrier operation. This ef-
fectively turns the broadcast into a synchronizing broadcast with possible communica-
tion/communication overlap (MPI_Bcast is allowed, but not required to synchronize).

34

36
37

Example 5.29 The starting order of collective operations on a particular communicator ®

defines their matching. The following example shows an erroneous matching of different
collective operations on the same communicator.

39

40

41

MPI_Request req; .
switch(rank) { *
case O: “

/* erroneous matching */ @
MPI_TIbarrier(comm, &req); o
MPI_Bcast(bufl, count, type, 0, comm); a7

MPI_Wait(&req, MPI_STATUS_IGNORE) ; 8
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break;

case 1:
/* erroneous matching */
MPI_Bcast(bufl, count, type, 0, comm);
MPI_Ibarrier(comm, &req);
MPI_Wait(&req, MPI_STATUS_IGNORE);
break;

This ordering would match MPI_Ibarrier on rank 0 with MPI_Bcast on rank 1 which is
erroneous and the program behavior is undefined. However, if such an order is required, the
user must create different duplicate communicators and perform the operations on them.
The following program would be legal:

MPI_Request req;
MPI_Comm dupcomm;
MPI_Comm_dup(comm, &dupcomm) ;
switch(rank) {
case O:
MPI_TIbarrier(comm, &req);
MPI_Bcast(bufl, count, type, 0, dupcomm);
MPI_Wait(&req, MPI_STATUS_IGNORE) ;
break;
case 1:
MPI_Bcast(bufl, count, type, 0, dupcomm);
MPI_Ibarrier(comm, &req);
MPI_Wait(&req, MPI_STATUS_IGNORE) ;
break;

Advice to users. The use of different communicators offers some flexibility regarding
the matching of nonblocking collective operations. In this sense, communicators could
be used as an equivalent to tags. However, communicator construction might induce
huge overheads so that this should only be done if absolutely necessary. (End of advice
to users.)

Example 5.30 Nonblocking collective operations can rely on the same progression rules as
nonblocking point-to-point messages. Thus, the following program is a valid MPI program
and is guaranteed to terminate:

MPI_Request req;

switch(rank) {
case O:
MPI_TIbarrier(comm, &req);
MPI_Wait(&req, MPI_STATUS_IGNORE);
MPI_Send(buf, count, dtype, 1, tag, comm);
break;
case 1:
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MPI_Ibarrier(comm, &req);

MPI_Recv(buf, count, dtype, O, tag, comm, MPI_STATUS_IGNORE);
MPI_Wait(&req, MPI_STATUS_IGNORE);

break;

The MPI library must progress and finish the barrier in the MPI_Recv call which

eventually completes the barrier operation on both processes and enables the matching
MPI_Send.

Example 5.31 Collective and point-to-point requests can be mixed in functions that en-
able multiple completions. The following program is valid.

MPI_Request reqs[2];

switch(rank) {

case O:
MPI_TIbarrier(comm, &reqs[0]);
MPI_Send(buf, count, dtype, 1, tag, comm);
MPI_Wait(&reqs[0], MPI_STATUS_IGNORE) ;
break;

case 1:
MPI_Irecv(buf, count, dtype, O, tag, comm, &reqsl[0]);
MPI_TIbarrier(comm, &reqs[1]);
MPI_Waitall(2, reqs, MPI_STATUSES_IGNORE) ;
break;

The Waitall call returns only after the barrier and the receive completed.

Example 5.32 Multiple nonblocking collective operations can be outstanding on a single
communicator and match in order.

MPI_Request reqs[3];

compute (bufl);
MPI_Ibcast(bufl, count, type, 0, comm, &reqsl[0]);
compute (buf2) ;
MPI_Ibcast(buf2, count, type, 0, comm, &reqs[1]);
compute (buf3) ;

MPI_Ibcast(buf3, count, type, 0, comm, &reqs[2]);
MPI_Waitall(3, regs, MPI_STATUSES_IGNORE) ;

Advice to users. Pipelining and double-buffering techniques can efficiently be used
to overlap computation and communication. (End of advice to users.)

Advice to implementors. The use of pipelining can potentially generate a huge num-
ber of outstanding requests. Thus, the number of outstanding requests should only
be limited by physical memory. A hardware-supported implementation with limited
resources should be able to fall back to a software implementation if its resources are
exhausted. (End of advice to implementors.)
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Example 5.33 Nonblocking collective operations can also be used to enable simultaneous
collective operations on multiple overlapping communicators. The following example is
started with three processes and three communicators. The first communicator commi
includes ranks 0 and 1, comm?2 includes ranks 1 and 2 and comm3 spans ranks 0 and 2. It is
not possible to perform a blocking collective operation on all communicators because there
exists no deadlock-free order to invoke them. However, nonblocking collective operations
can easily be used to achieve this task.

MPI_Request reqs[2];

switch(rank) {
case O:
MPI_Tallreduce(sbufl, rbufl, count, dtype, MPI_SUM, comml, &reqs[0]);
MPI_TIallreduce(sbuf3, rbuf3, count, dtype, MPI_SUM, comm3, &reqs([1]);
break;
case 1:
MPI_Tallreduce(sbufl, rbufl, count, dtype, MPI_SUM, comml, &reqs([0]);
MPI_TIallreduce(sbuf2, rbuf2, count, dtype, MPI_SUM, comm2, &reqs([1]);
break;
case 2:
MPI_Tallreduce(sbuf2, rbuf2, count, dtype, MPI_SUM, comm2, &reqs([0]);
MPI_TIallreduce(sbuf3, rbuf3, count, dtype, MPI_SUM, comm3, &reqs([1]);
break;
}
MPI_Waitall(2, reqs, MPI_STATUSES_IGNORE);

Advice to users. This method can be very useful if overlapping neighboring regions
(halo or ghost zones) are used in collective operations. (End of advice to users.)
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