MPI: A Message-Passing Interface Standard Extension: Nonblocking Collective Operations (Revision 4)

Message Passing Interface Forum

February 20, 2009

Contents

5	Coll	ective	Communication	1
	5.1	Introd	luction and Overview	1
	5.2	Comm	unicator Argument	4
		5.2.1	Specifics for Intracommunicator Collective Operations	4
		5.2.2	Applying Collective Operations to Intercommunicators	5
		5.2.3	Specifics for Intercommunicator Collective Operations	6
	5.3	Barrie	r Synchronization	7
	5.4	Broad	cast	8
		5.4.1	Example using MPI_BCAST	9
	5.5	Gathe	r	9
		5.5.1	Examples using MPI_GATHER, MPI_GATHERV	12
	5.6	Scatte	Υ	19
		5.6.1	Examples using MPI_SCATTER, MPI_SCATTERV	21
	5.7	Gathe	r-to-all	24
		5.7.1	Examples using MPI_ALLGATHER, MPI_ALLGATHERV	26
	5.8	All-to-	-All Scatter/Gather	27
	5.9	Globa	l Reduction Operations	31
		5.9.1	Reduce	32
		5.9.2	Predefined Reduction Operations	33
		5.9.3	Signed Characters and Reductions	35
		5.9.4	MINLOC and MAXLOC	36
		5.9.5	User-Defined Reduction Operations	40
			Example of User-defined Reduce	42
		5.9.6	All-Reduce	43
	5.10	Reduc	e-Scatter	45
	5.11	\mathbf{Scan}		46
		5.11.1	Inclusive Scan	46
		5.11.2	Exclusive Scan	47
		5.11.3	Example using MPI_SCAN	48
	5.12	Nonbl	ocking Collective Operations	49
		5.12.1	Nonblocking Barrier Synchronization	51
		5.12.2	Nonblocking Broadcast	52
			Example using MPI_IBCAST	52
		5.12.3	Nonblocking Gather	53
		5.12.4	Nonblocking Scatter	55
		5.12.5	Nonblocking Gather-to-all	57
			Nonblocking All-to-All Scatter/Gather	59

	5.12.7 Nonblocking Reduce
	5.12.8 Nonblocking All-Reduce
	5.12.9 Nonblocking Reduce-Scatter
	5.12.10 Nonblocking Inclusive Scan
	5.12.11 Nonblocking Exclusive Scan
5.13	Correctness

73

Bibliography

Chapter 5

Collective Communication

5.1 Introduction and Overview

Collective communication is defined as communication that involves a group or groups of processes. The functions of this type provided by MPI are the following:

• MPI_BARRIER, MPI_IBARRIER: Barrier synchronization across all members of a group (Section 5.3 and Section 5.12.1).

 24

- MPI_BCAST, MPI_IBCAST: Broadcast from one member to all members of a group (Section 5.4 and Section 5.12.2). This is shown as "broadcast" in Figure 5.1.
- MPI_GATHER, MPI_IGATHER, MPI_GATHERV, MPI_IGATHERV: Gather data from all members of a group to one member (Section 5.5 and Section 5.12.3). This is shown as "gather" in Figure 5.1.
- MPI_SCATTER, MPI_ISCATTER, MPI_SCATTERV, MPI_ISCATTERV: Scatter data from one member to all members of a group (Section 5.6 and Section 5.12.4). This is shown as "scatter" in Figure 5.1.
- MPI_ALLGATHER, MPI_IALLGATHER, MPI_ALLGATHERV, MPI_IALLGATHERV: A variation on Gather where all members of a group receive the result (Section 5.7 and Section 5.12.5). This is shown as "allgather" in Figure 5.1.
- MPI_ALLTOALL, MPI_IALLTOALL, MPI_ALLTOALLV, MPI_IALLTOALLV, MPI_ALLTOALLW, MPI_ALLTOALLW, MPI_IALLTOALLW: Scatter/Gather data from all members to all members of a group (also called complete exchange or all-to-all) (Section 5.8 and Section 5.12.6). This is shown as "alltoall" in Figure 5.1.
- MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_REDUCE, MPI_IREDUCE: Global reduction operations such as sum, max, min, or user-defined functions, where the result is returned to all members of a group (Section 5.9.6 and Section 5.12.8) and a variation where the result is returned to only one member (Section 5.9 and Section 5.12.7).
- MPI_REDUCE_SCATTER, MPI_IREDUCE_SCATTER: A combined reduction and scatter operation (Section 5.10 and Section 5.12.9).
- MPI_SCAN, MPI_ISCAN, MPI_EXSCAN, MPI_IEXSCAN: Scan across all members of a group (also called prefix) (Section 5.11, Section 5.11.2, Section 5.12.10, and Section 5.12.11). 48

1 One of the key arguments in a call to a collective routine is a communicator that $\mathbf{2}$ defines the group or groups of participating processes and provides a context for the oper-3 ation. This is discussed further in Section 5.2. The syntax and semantics of the collective 4 operations are defined to be consistent with the syntax and semantics of the point-to-point $\mathbf{5}$ operations. Thus, general datatypes are allowed and must match between sending and re-6 ceiving processes as specified in Chapter ??. Several collective routines such as broadcast 7and gather have a single originating or receiving process. Such a process is called the *root*. 8 Some arguments in the collective functions are specified as "significant only at root," and 9 are ignored for all participants except the root. The reader is referred to Chapter ?? for 10 information concerning communication buffers, general datatypes and type matching rules, 11 and to Chapter ?? for information on how to define groups and create communicators.

12The type-matching conditions for the collective operations are more strict than the cor-13 responding conditions between sender and receiver in point-to-point. Namely, for collective 14operations, the amount of data sent must exactly match the amount of data specified by 15the receiver. Different type maps (the layout in memory, see Section ??) between sender 16 and receiver are still allowed.

17 Collective routine callsoperations can (but are not required to) returncomplete as soon 18 as their the caller's participation in the collective communication is complete finished. A 19 blocking operation is complete as soon as the call returns. A nonblocking (immediate) call requires a separate completion call ?? (Section 3.7). The completion of a callcollective 2021operation indicates that the caller is now free to access locations in the communication 22 buffer. It does not indicate that other processes in the group have completed or even started 23the operation (unless otherwise implied by in the description of the operation). Thus, a 24collective communication calloperation may, or may not, have the effect of synchronizing 25all calling processes. This statement excludes, of course, the barrier function operation.

26 Collective communication calls may use the same communicators as point-to-point 27communication; MPI guarantees that messages generated on behalf of collective communi-28cation calls will not be confused with messages generated by point-to-point communication. 29The collective operations do not have a message tag argument. A more detailed discussion 30 of correct use of collective routines is found in Section 5.13.

32 Rationale. The equal-data restriction (on type matching) was made so as to avoid the complexity of providing a facility analogous to the status argument of MPI_RECV 33 for discovering the amount of data sent. Some of the collective routines would require an array of status values. 35

- 36 The statements about synchronization are made so as to allow a variety of implemen-37 tations of the collective functions. 38
 - The collective operations do not accept a message tag argument. If future revisions of MPI define nonblocking collective functions, then tags (or a similar mechanism) might need to be added so as to allow the dis-ambiguation of multiple, pending, collective operations. (End of rationale.)
- It is dangerous to rely on synchronization side-effects of the col-Advice to users. 44 lective operations for program correctness. For example, even though a particular 45implementation may provide a broadcast routine with a side-effect of synchroniza-46tion, the standard does not require this, and a program that relies on this will not be 47portable. 48

31

34

39

40

41

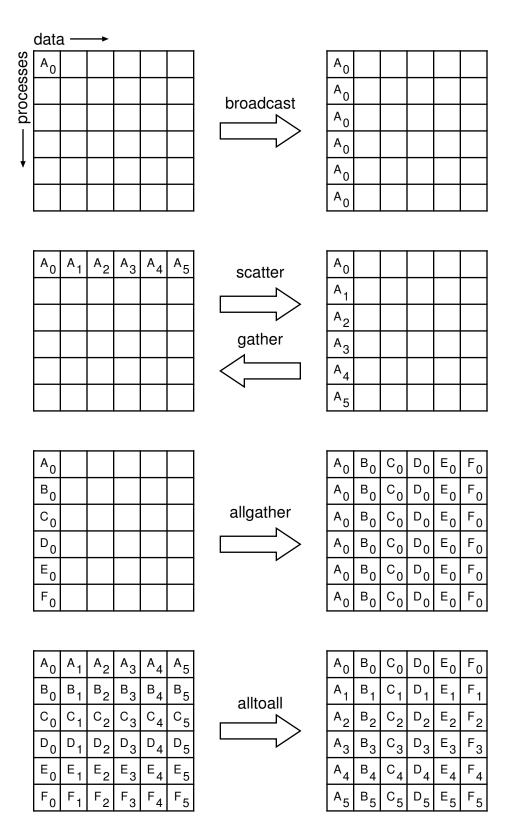


Figure 5.1: Collective move functions illustrated for a group of six processes. In each case, each row of boxes represents data locations in one process. Thus, in the broadcast, initially just the first process contains the data A_0 , but after the broadcast all processes contain it.

On the other hand, a correct, portable program must allow for the fact that a collective call *may* be synchronizing. Though one cannot rely on any synchronization side-effect, one must program so as to allow it. These issues are discussed further in Section 5.13. (*End of advice to users.*)

Advice to implementors. While vendors may write optimized collective routines matched to their architectures, a complete library of the collective communication routines can be written entirely using the MPI point-to-point communication functions and a few auxiliary functions. If implementing on top of point-to-point, a hidden, special communicator might be created for the collective operation so as to avoid interference with any on-going point-to-point communication at the time of the collective call. This is discussed further in Section 5.13. (*End of advice to implementors.*)

Many of the descriptions of the collective routines provide illustrations in terms of blocking MPI point-to-point routines. These are intended solely to indicate what data is sent or received by what process. Many of these examples are *not* correct MPI programs; for purposes of simplicity, they often assume infinite buffering.

17 18 19

20

5.2 Communicator Argument

The key concept of the collective functions is to have a group or groups of participating processes. The routines do not have group identifiers as explicit arguments. Instead, there is a communicator argument. Groups and communicators are discussed in full detail in Chapter ??. For the purposes of this chapter, it is sufficient to know that there are two types of communicators: *intra-communicators* and *inter-communicators*. An intracommunicator can be thought of as an identifier for a single group of processes linked with a context. An intercommunicator identifies two distinct groups of processes linked with a context.

- 28
- ²⁹ 5

5.2.1 Specifics for Intracommunicator Collective Operations

All processes in the group identified by the intracommunicator must call the collective routine with matching arguments.

In many cases, collective communication can occur "in place" for intracommunicators, with the output buffer being identical to the input buffer. This is specified by providing a special argument value, MPI_IN_PLACE, instead of the send buffer or the receive buffer argument, depending on the operation performed.

37 38

39

40

41

42

43

44

Rationale. The "in place" operations are provided to reduce unnecessary memory motion by both the MPI implementation and by the user. Note that while the simple check of testing whether the send and receive buffers have the same address will work for some cases (e.g., MPI_ALLREDUCE), they are inadequate in others (e.g., MPI_GATHER, with root not equal to zero). Further, Fortran explicitly prohibits aliasing of arguments; the approach of using a special value to denote "in place" operation eliminates that difficulty. (End of rationale.)

Advice to users. By allowing the "in place" option, the receive buffer in many of the collective calls becomes a send-and-receive buffer. For this reason, a Fortran binding that includes INTENT must mark these as INOUT, not OUT.

1

2

3

4

5 6

7

8

9

10 11

12

13

14

15

Note that MPI_IN_PLACE is a special kind of value; it has the same restrictions on its use that MPI_BOTTOM has.

Some intracommunicator collective operations do not support the "in place" option (e.g., MPI_ALLTOALLV). (*End of advice to users.*)

5.2.2 Applying Collective Operations to Intercommunicators

To understand how collective operations apply to intercommunicators, we can view most MPI intracommunicator collective operations as fitting one of the following categories (see, for instance, [5]):

All-To-All All processes contribute to the result. All processes receive the result.

- MPI_ALLGATHER, MPI_IALLGATHER, MPI_ALLGATHERV, MPI_IALLGATHERV
- MPI_ALLTOALL, MPI_IALLTOALL, MPI_ALLTOALLV, MPI_IALLTOALLV, MPI_ALLTOALLW, MPI_IALLTOALLW
- MPI_ALLREDUCE, <u>MPI_IALLREDUCE</u>, <u>MPI_REDUCE_SCATTER</u>, <u>MPI_IREDUCE_SCATTER</u>

All-To-One All processes contribute to the result. One process receives the result.

- MPI_GATHER, MPI_IGATHER, MPI_GATHERV, MPI_IGATHERV
- MPI_REDUCE, MPI_IREDUCE

One-To-All One process contributes to the result. All processes receive the result.

- MPI_BCAST, MPI_IBCAST
- MPI_SCATTER, MPI_ISCATTER, MPI_SCATTERV, MPI_ISCATTERV

Other Collective operations that do not fit into one of the above categories.

- MPI_SCAN, MPI_ISCAN, MPI_EXSCAN, MPI_IEXSCAN
- MPI_BARRIER, MPI_IBARRIER

behavior.

The MPI_BARRIER and MPI_IBARRIER operation-doess do not fit into this classification since no data is being moved (other than the implicit fact that a barrier has been called). The data movement patterns of MPI_SCAN, MPI_ISCAN and, MPI_EXSCAN, and MPI_IEXSCAN do not fit this taxonomy.

The application of collective communication to intercommunicators is best described in terms of two groups. For example, an all-to-all MPI_ALLGATHER operation can be described as collecting data from all members of one group with the result appearing in all members of the other group (see Figure 5.2). As another example, a one-to-all MPI_BCAST operation sends data from one member of one group to all members of the other group. Collective computation operations such as MPI_REDUCE_SCATTER have a similar interpretation (see Figure 5.3). For intracommunicators, these two groups are the same. For intercommunicators, these two groups are distinct. For the all-to-all operations, each such operation is described in two phases, so that it has a symmetric, full-duplex

The following collective operations also apply to intercommunicators:

1

2

3

4

5 6

7

8

9

10

11 12

13

14

15

16

17

18

19 20

21 22

23

24 25

26

27

28 29

30 31

32

33 34

35

36 37

38 39

40 41

42

43 44

45

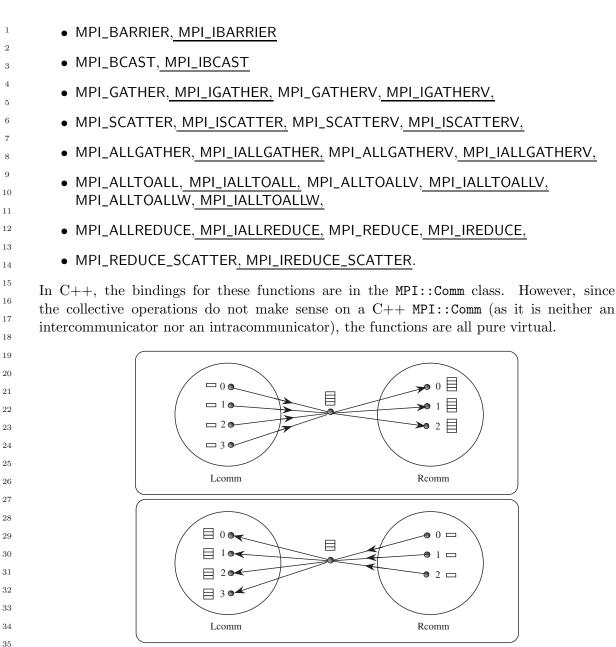


Figure 5.2: Intercommunicator allgather. The focus of data to one process is represented, not mandated by the semantics. The two phases do allgathers in both directions.

5.2.3 Specifics for Intercommunicator Collective Operations

All processes in both groups identified by the intercommunicator must call the collective
 routine. In addition, processes in the same group must call the routine with matching
 arguments.

⁴⁵ Note that the "in place" option for intracommunicators does not apply to intercommunicators since in the intercommunicator case there is no communication from a process
 ⁴⁷ to itself.

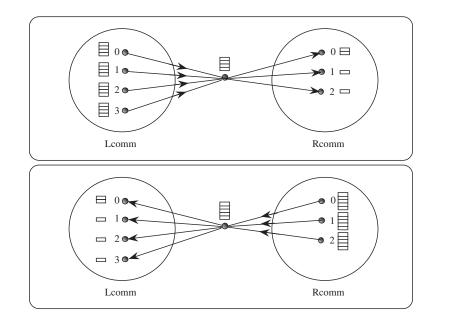


Figure 5.3: Intercommunicator reduce-scatter. The focus of data to one process is represented, not mandated by the semantics. The two phases do reduce-scatters in both directions.

For intercommunicator collective communication, if the operation is rooted (e.g., broadcast, gather, scatter), then the transfer is unidirectional. The direction of the transfer is indicated by a special value of the root argument. In this case, for the group containing the root process, all processes in the group must call the routine using a special argument for the root. For this, the root process uses the special root value MPI_ROOT; all other processes in the same group as the root use MPI_PROC_NULL. All processes in the other group (the group that is the remote group relative to the root process) must call the collective routine and provide the rank of the root. If the operation is unrooted (e.g., alltoall), then the transfer is bidirectional.

Rationale. Rooted operations are unidirectional by nature, and there is a clear way of specifying direction. Non-rooted operations, such as all-to-all, will often occur as part of an exchange, where it makes sense to communicate in both directions at once. (*End of rationale.*)

5.3 Barrier Synchronization MPI_BARRIER(comm) IN comm communicator (handle) int MPI_Barrier(MPI_Comm comm) MPI_BARRIER(COMM, IERROR) INTEGER COMM, IERROR

void MPI::Comm::Barrier() const = 0

If comm is an intracommunicator, MPI_BARRIER blocks the caller until all group members have called it. The call returns at any process only after all group members have entered the call.

If comm is an intercommunicator, the barrier is performed across all processes in the intercommunicator. In this case, all processes in one group (group A) of the intercommunicator may exit the barrier when all of the processes in the other group (group B) have entered the barrier.

5.4 Broadcast

MPI_BCAST(buffer, count, datatype, root, comm)

16	INOUT	buffer	starting address of buffer (choice)	
17	IN	count	number of entries in buffer (non-negative integer)	
18 19	IN	datatype	data type of buffer (handle)	
20	IN	root	rank of broadcast root (integer)	
21	IN	comm	communicator (handle)	
22 23				
24	int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,			
25		MPI_Comm comm)		
26	MPI_BCAST	(BUFFER, COUNT, DATATYPE	, ROOT, COMM, IERROR)	

27<type> BUFFER(*)

INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

29void MPI::Comm::Bcast(void* buffer, int count, 30 const MPI::Datatype& datatype, int root) const = 0 31

32 If comm is an intracommunicator, MPI_BCAST broadcasts a message from the process 33 with rank root to all processes of the group, itself included. It is called by all members of 34 the group using the same arguments for comm and root. On return, the content of root's 35 buffer is copied to all other processes.

36 General, derived datatypes are allowed for datatype. The type signature of count, 37 datatype on any process must be equal to the type signature of count, datatype at the root. 38This implies that the amount of data sent must be equal to the amount received, pairwise 39 between each process and the root. MPI_BCAST and all other data-movement collective 40 routines make this restriction. Distinct type maps between sender and receiver are still 41allowed.

```
42
          The "in place" option is not meaningful here.
```

43 If comm is an intercommunicator, then the call involves all processes in the intercom-44municator, but with one group (group A) defining the root process. All processes in the 45other group (group B) pass the same value in argument root, which is the rank of the root 46in group A. The root passes the value MPI_ROOT in root. All other processes in group A 47pass the value MPI_PROC_NULL in root. Data is broadcast from the root to all processes 48

1

 $\mathbf{2}$

3

4

5

6

7

8

9 10 11

1213 14

in group B. The buffer arguments of the processes in group B must be consistent with the buffer argument of the root.

5.4.1 Example using MPI_BCAST

The examples in this section use intracommunicators.

Example 5.1 Broadcast 100 ints from process 0 to every process in the group.

```
MPI_Comm comm;
int array[100];
int root=0;
...
MPI_Bcast(array, 100, MPI_INT, root, comm);
```

As in many of our example code fragments, we assume that some of the variables (such as comm in the above) have been assigned appropriate values.

5.5 Gather

MPI_GATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

		pe, recubul, recuculat, recutype, root, commy	24
IN	sendbuf	starting address of send buffer (choice)	25
IN	sendcount	number of elements in send buffer (non-negative inte-	26
		ger)	27
IN	sendtype	data type of send buffer elements (handle)	28
OUT	recvbuf	address of receive buffer (choice, significant only at	29
001		root)	30 31
IN	recvcount	number of elements for any single receive (non-negative	32
		integer, significant only at root)	33
IN	recvtype	data type of recv buffer elements (significant only at	34
	,	root) (handle)	35
IN	root	rank of receiving process (integer)	36
	1002		37
IN	comm	communicator (handle)	38
			39

int MPI_Gather(void* sendbuf, int sendcount, MPI_Datatype sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR) <type> SENDBUF(*), RECVBUF(*) INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

	10 CHAITER 5. COLLECTIVE COMMUNICATION
1 2 3	<pre>void MPI::Comm::Gather(const void* sendbuf, int sendcount, const MPI::Datatype& sendtype, void* recvbuf, int recvcount, const MPI::Datatype& recvtype, int root) const = 0</pre>
4 5 6 7 8	If comm is an intracommunicator, each process (root process included) sends the con- tents of its send buffer to the root process. The root process receives the messages and stores them in rank order. The outcome is <i>as if</i> each of the n processes in the group (including the root process) had executed a call to
9 10	${\tt MPI_Send}({\tt sendbuf}, {\tt sendcount}, {\tt sendtype}, {\tt root},),$
11	and the root had executed n calls to
12 13	$\texttt{MPI_Recv}(\texttt{recvbuf}+\texttt{i}\cdot\texttt{recvcount}\cdot\texttt{extent}(\texttt{recvtype}),\texttt{recvcount},\texttt{recvtype},\texttt{i},),$
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	 where extent(recvtype) is the type extent obtained from a call to MPI_Type_extent(). An alternative description is that the n messages sent by the processes in the group are concatenated in rank order, and the resulting message is received by the root as if by a call to MPI_RECV(recvbuf, recvcount-n, recvtype,). The receive buffer is ignored for all non-root processes. General, derived datatypes are allowed for both sendtype and recvtype. The type signature of sendcount, sendtype on each process must be equal to the type signature of recvcount, recvtype at the root. This implies that the amount of data sent must be equal to the amount of data received, pairwise between each process and the root. Distinct type maps between sender and receiver are still allowed. All arguments to the function are significant on process root, while on other processes, only arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments root and comm must have identical values on all processes. The specification of counts and types should not cause any location on the root to be written more than once. Such a call is erroneous. Note that the recvcount argument at the root indicates the number of items it receives from <i>each</i> process, not the total number of items it receives. The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE as the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and the contribution of the root to the gathered vector is assumed to be already in the correct place in the receive buffer. If comm is an intercommunicator, then the call involves all processes in the intercommunicator, but with one group (group A) defining the root process. All processes in group A pass the value MPI_PROC_NULL in root. Data is gathered from all processes in group B to the root. The send buffer arguments of the processes in group B must be consistent with the receive buffer argument of the root.<!--</td-->
45 46	

CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_GATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root, comm)					
IN	sendbuf	starting address of send buffer (choice)	3		
IN	sendcount	number of elements in send buffer (non-negative integer)	4 5 6		
IN	sendtype	data type of send buffer elements (handle)	7		
OUT	recvbuf	address of receive buffer (choice, significant only at root)	8 9 10		
IN	recvcounts	non-negative integer array (of length group size) con- taining the number of elements that are received from each process (significant only at root)	11 12 13		
IN	displs	integer array (of length group size). Entry i specifies the displacement relative to recvbuf at which to place the incoming data from process i (significant only at root)	14 15 16 17		
IN	recvtype	data type of recv buffer elements (significant only at root) (handle)	18 19 20		
IN	root	rank of receiving process (integer)	20		
IN	comm	communicator (handle)	22 23		
int MPI_Ga	<pre>int MPI_Gatherv(void* sendbuf, int sendcount, MPI_Datatype sendtype, void* recvbuf, int *recvcounts, int *displs, MPI_Datatype recvtype, int root, MPI_Comm comm)</pre>				
<pre>MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,</pre>					
<pre>void MPI::Comm::Gatherv(const void* sendbuf, int sendcount, const MPI::Datatype& sendtype, void* recvbuf, const int recvcounts[], const int displs[], const MPI::Datatype& recvtype, int root) const = 0</pre>					
MPI_GATHERV extends the functionality of MPI_GATHER by allowing a varying count of data from each process, since recvcounts is now an array. It also allows more flexibility as to where the data is placed on the root, by providing the new argument, displs. If comm is an intracommunicator, the outcome is <i>as if</i> each process, including the root process, sends a message to the root,					

MPI_Send(sendbuf, sendcount, sendtype, root, ...),
and the root executes n receives,
MPI_Recv(recvbuf + displs[j] · extent(recvtype), recvcounts[j], recvtype, i, ...).

The data received from process j is placed into recvbuf of the root process beginning at offset displs[j] elements (in terms of the recvtype).

The receive buffer is ignored for all non-root processes.

The type signature implied by sendcount, sendtype on process i must be equal to the type signature implied by recvcounts[i], recvtype at the root. This implies that the amount of data sent must be equal to the amount of data received, pairwise between each process and the root. Distinct type maps between sender and receiver are still allowed, as illustrated in Example 5.6.

All arguments to the function are significant on process root, while on other processes,
 only arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments
 root and comm must have identical values on all processes.

¹² The specification of counts, types, and displacements should not cause any location on ¹³ the root to be written more than once. Such a call is erroneous.

The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE as the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and the contribution of the root to the gathered vector is assumed to be already in the correct place in the receive buffer

¹⁸ If comm is an intercommunicator, then the call involves all processes in the intercom-¹⁹ municator, but with one group (group A) defining the root process. All processes in the ²⁰ other group (group B) pass the same value in argument root, which is the rank of the root ²¹ in group A. The root passes the value MPI_ROOT in root. All other processes in group A ²² pass the value MPI_PROC_NULL in root. Data is gathered from all processes in group B to ²³ the root. The send buffer arguments of the processes in group B must be consistent with ²⁴ the receive buffer argument of the root.

25 26

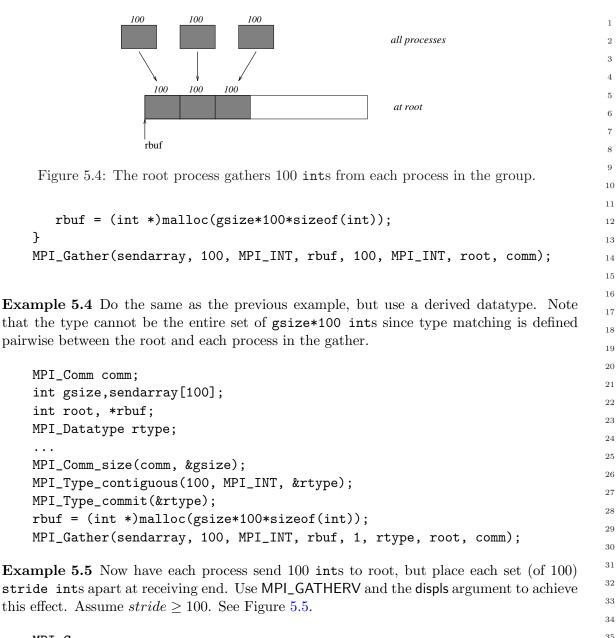
27

29

5.5.1 Examples using MPI_GATHER, MPI_GATHERV

 $_{28}$ The examples in this section use intracommunicators.

Example 5.2 Gather 100 ints from every process in group to root. See figure 5.4.


```
MPI_Comm comm;
mt gsize,sendarray[100];
mt root, *rbuf;
...
MPI_Comm_size(comm, &gsize);
mt root, *rbuf = (int *)malloc(gsize*100*sizeof(int));
MPI_Gather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);
```

Example 5.3 Previous example modified – only the root allocates memory for the receive
 buffer.

```
MPI_Comm comm;
MPI_Comm comm;
int gsize,sendarray[100];
int root, myrank, *rbuf;
...
MPI_Comm_rank(comm, &myrank);
if (myrank == root) {
MPI_Comm_size(comm, &gsize);
```

1

 $\mathbf{2}$


```
35
MPI_Comm comm;
                                                                                   36
int gsize, sendarray[100];
                                                                                   37
int root, *rbuf, stride;
                                                                                    38
int *displs,i,*rcounts;
                                                                                    39
                                                                                    40
. . .
                                                                                    41
MPI_Comm_size(comm, &gsize);
                                                                                    42
rbuf = (int *)malloc(gsize*stride*sizeof(int));
                                                                                    43
                                                                                    44
displs = (int *)malloc(gsize*sizeof(int));
rcounts = (int *)malloc(gsize*sizeof(int));
                                                                                    45
                                                                                    46
for (i=0; i<gsize; ++i) {</pre>
                                                                                    47
    displs[i] = i*stride;
                                                                                    48
    rcounts[i] = 100;
```

1 2 3 4 5 6 7 8	100 100 100 all processes 100 100 100 100 100 at root rbuf
9 10 11 12	Figure 5.5: The root process gathers 100 ints from each process in the group, each set is placed stride ints apart.
13 14 15	<pre>> MPI_Gatherv(sendarray, 100, MPI_INT, rbuf, rcounts, displs, MPI_INT,</pre>
16 17 18	Note that the program is erroneous if $stride < 100$.
19 20 21 22	Example 5.6 Same as Example 5.5 on the receiving side, but send the 100 ints from the 0th column of a 100×150 int array, in C. See Figure 5.6.
22	MPI_Comm comm;
23	<pre>int gsize,sendarray[100][150];</pre>
24	<pre>int root, *rbuf, stride;</pre>
25	MPI_Datatype stype;
26	<pre>int *displs,i,*rcounts;</pre>
27	
28 29 30	
31	<pre>MPI_Comm_size(comm, &gsize);</pre>
32	<pre>rbuf = (int *)malloc(gsize*stride*sizeof(int));</pre>
33	<pre>displs = (int *)malloc(gsize*sizeof(int));</pre>
34	<pre>rcounts = (int *)malloc(gsize*sizeof(int));</pre>
35	<pre>for (i=0; i<gsize; ++i)="" pre="" {<=""></gsize;></pre>
36	displs[i] = i*stride;
37	<pre>rcounts[i] = 100;</pre>
38	}
39	/* Create datatype for 1 column of array
40	*/
41	<pre>MPI_Type_vector(100, 1, 150, MPI_INT, &stype);</pre>
42	<pre>MPI_Type_commit(&stype);</pre>
43	MPI_Gatherv(sendarray, 1, stype, rbuf, rcounts, displs, MPI_INT,
44	root, comm);
45	
46	Example 5.7 Process i sends (100-i) into from the ith column of a 100 × 150 int
47	Example 5.7 Process i sends (100-i) ints from the i-th column of a 100×150 int array, in C. It is received into a buffer with stride, as in the previous two examples. See
48	Figure 5.7.

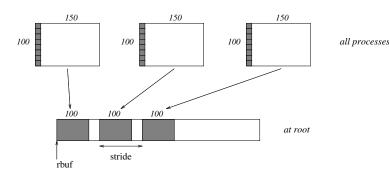


Figure 5.6: The root process gathers column 0 of a 100×150 C array, and each set is placed stride ints apart.

```
MPI_Comm comm;
                                                                                 14
int gsize,sendarray[100][150],*sptr;
                                                                                 15
int root, *rbuf, stride, myrank;
                                                                                 16
MPI_Datatype stype;
                                                                                 17
int *displs,i,*rcounts;
                                                                                 18
                                                                                 19
. . .
                                                                                 20
                                                                                 21
MPI_Comm_size(comm, &gsize);
                                                                                 22
MPI_Comm_rank(comm, &myrank);
                                                                                 23
rbuf = (int *)malloc(gsize*stride*sizeof(int));
                                                                                 24
displs = (int *)malloc(gsize*sizeof(int));
                                                                                 25
rcounts = (int *)malloc(gsize*sizeof(int));
                                                                                 26
for (i=0; i<gsize; ++i) {</pre>
                                                                                 27
    displs[i] = i*stride;
                                                                                 28
    rcounts[i] = 100-i;
                              /* note change from previous example */
                                                                                 29
}
                                                                                 30
/* Create datatype for the column we are sending
                                                                                 31
 */
                                                                                 32
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
                                                                                 33
MPI_Type_commit(&stype);
                                                                                 34
/* sptr is the address of start of "myrank" column
                                                                                 35
 */
                                                                                 36
sptr = &sendarray[0][myrank];
                                                                                 37
MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,
                                                                                 38
                                                        root, comm);
                                                                                 39
                                                                                 40
```

Note that a different amount of data is received from each process.

Example 5.8 Same as Example 5.7, but done in a different way at the sending end. We create a datatype that causes the correct striding at the sending end so that we read a column of a C array. A similar thing was done in Example ??, Section ??.

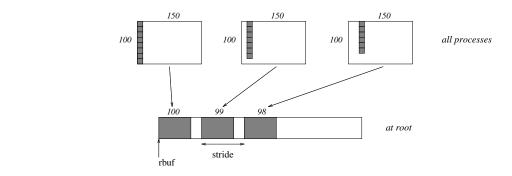

MPI_Comm comm; int gsize,sendarray[100][150],*sptr;

Figure 5.7: The root process gathers 100-i ints from column i of a 100×150 C array, and each set is placed stride ints apart.

```
13
         int root, *rbuf, stride, myrank, disp[2], blocklen[2];
14
         MPI_Datatype stype,type[2];
15
         int *displs,i,*rcounts;
16
17
18
         . . .
19
         MPI_Comm_size(comm, &gsize);
20
         MPI_Comm_rank(comm, &myrank);
21
         rbuf = (int *)malloc(gsize*stride*sizeof(int));
22
         displs = (int *)malloc(gsize*sizeof(int));
23
         rcounts = (int *)malloc(gsize*sizeof(int));
24
         for (i=0; i<gsize; ++i) {</pre>
25
             displs[i] = i*stride;
26
             rcounts[i] = 100-i;
27
         }
28
         /* Create datatype for one int, with extent of entire row
29
          */
30
         disp[0] = 0;
                              disp[1] = 150*sizeof(int);
31
         type[0] = MPI_INT; type[1] = MPI_UB;
32
         blocklen[0] = 1;
                              blocklen[1] = 1;
33
         MPI_Type_struct(2, blocklen, disp, type, &stype);
34
         MPI_Type_commit(&stype);
35
         sptr = &sendarray[0][myrank];
36
         MPI_Gatherv(sptr, 100-myrank, stype, rbuf, rcounts, displs, MPI_INT,
37
                                                                         root, comm);
38
39
40
     Example 5.9 Same as Example 5.7 at sending side, but at receiving side we make the
41
```

Example 5.9 Same as Example 5.7 at sending side, but at receiving side we make the stride between received blocks vary from block to block. See Figure 5.8.

43 MPI_Comm comm;
44 int gsize,sendarray[100][150],*sptr;
45 int root, *rbuf, *stride, myrank, bufsize;
46 MPI_Datatype stype;
47 int *displs,i,*rcounts,offset;
48

16

1

2

> 7 8

9 10

11

12

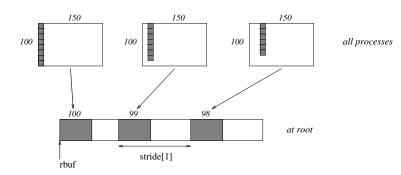


Figure 5.8: The root process gathers 100-i ints from column i of a 100×150 C array, and each set is placed stride[i] ints apart (a varying stride).

```
. . .
                                                                                  15
MPI_Comm_size(comm, &gsize);
                                                                                  16
MPI_Comm_rank(comm, &myrank);
                                                                                  17
                                                                                  18
stride = (int *)malloc(gsize*sizeof(int));
                                                                                  19
. . .
                                                                                  20
/* stride[i] for i = 0 to gsize-1 is set somehow
                                                                                 21
 */
                                                                                  22
                                                                                 23
/* set up displs and rcounts vectors first
                                                                                  24
 */
                                                                                  25
displs = (int *)malloc(gsize*sizeof(int));
                                                                                  26
rcounts = (int *)malloc(gsize*sizeof(int));
                                                                                  27
offset = 0;
                                                                                  28
for (i=0; i<gsize; ++i) {</pre>
                                                                                  29
    displs[i] = offset;
                                                                                  30
    offset += stride[i];
                                                                                  31
    rcounts[i] = 100-i;
                                                                                  32
}
                                                                                  33
/* the required buffer size for rbuf is now easily obtained
                                                                                 34
 */
                                                                                 35
bufsize = displs[gsize-1]+rcounts[gsize-1];
                                                                                 36
rbuf = (int *)malloc(bufsize*sizeof(int));
                                                                                 37
/* Create datatype for the column we are sending
                                                                                  38
 */
                                                                                  39
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);
                                                                                  40
MPI_Type_commit(&stype);
                                                                                  41
sptr = &sendarray[0][myrank];
                                                                                  42
MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,
                                                                                  43
                                                        root, comm);
                                                                                  44
                                                                                  45
```

Example 5.10 Process i sends num ints from the i-th column of a 100×150 int array, in C. The complicating factor is that the various values of num are not known to root, so a

```
1
     separate gather must first be run to find these out. The data is placed contiguously at the
\mathbf{2}
     receiving end.
3
4
         MPI_Comm comm;
         int gsize, sendarray[100][150], *sptr;
5
         int root, *rbuf, stride, myrank, disp[2], blocklen[2];
6
         MPI_Datatype stype,types[2];
7
         int *displs,i,*rcounts,num;
8
9
10
         . . .
11
12
         MPI_Comm_size(comm, &gsize);
         MPI_Comm_rank(comm, &myrank);
13
14
         /* First, gather nums to root
15
16
          */
17
         rcounts = (int *)malloc(gsize*sizeof(int));
         MPI_Gather(&num, 1, MPI_INT, rcounts, 1, MPI_INT, root, comm);
18
         /* root now has correct rcounts, using these we set displs[] so
19
          * that data is placed contiguously (or concatenated) at receive end
20
          */
21
         displs = (int *)malloc(gsize*sizeof(int));
22
         displs[0] = 0;
23
         for (i=1; i<gsize; ++i) {</pre>
24
             displs[i] = displs[i-1]+rcounts[i-1];
25
26
         }
         /* And, create receive buffer
27
          */
28
         rbuf = (int *)malloc(gsize*(displs[gsize-1]+rcounts[gsize-1])
29
                                                                        *sizeof(int));
30
         /* Create datatype for one int, with extent of entire row
31
          */
32
         disp[0] = 0;
                              disp[1] = 150*sizeof(int);
33
34
         type[0] = MPI_INT; type[1] = MPI_UB;
         blocklen[0] = 1;
                              blocklen[1] = 1;
35
         MPI_Type_struct(2, blocklen, disp, type, &stype);
36
         MPI_Type_commit(&stype);
37
         sptr = &sendarray[0][myrank];
38
         MPI_Gatherv(sptr, num, stype, rbuf, rcounts, displs, MPI_INT,
39
40
                                                                          root, comm);
41
42
43
44
45
46
47
48
```

5.6 Scatter

MPI_SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

			0
IN	sendbuf	address of send buffer (choice, significant only at root)	6
IN	sendcount	number of elements sent to each process (non-negative	7
		integer, significant only at root)	8
IN	sendtype	data type of send buffer elements (significant only at	9
	Senacype	root) (handle)	10
			11
OUT	recvbuf	address of receive buffer (choice)	12
IN	recvcount	number of elements in receive buffer (non-negative in-	13
		teger)	14
IN	racitiona	data type of receive buffer elements (handle)	15
IIN	recvtype	data type of receive buner elements (nandle)	16
IN	root	rank of sending process (integer)	17
IN	comm	communicator (handle)	18
			19

int MPI_Scatter(void* sendbuf, int sendcount, MPI_Datatype sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR) <type> SENDBUF(*), RECVBUF(*) INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

void MPI::Comm::Scatter(const void* sendbuf, int sendcount, const MPI::Datatype& sendtype, void* recvbuf, int recvcount, const MPI::Datatype& recvtype, int root) const = 0

MPI_SCATTER is the inverse operation to MPI_GATHER.

If comm is an intracommunicator, the outcome is $as \ if$ the root executed n send operations,

```
MPI_Send(sendbuf + i \cdot sendcount \cdot extent(sendtype), sendcount, sendtype, i, ...),
```

and each process executed a receive,

MPI_Recv(recvbuf, recvcount, recvtype, i, ...).

An alternative description is that the root sends a message with MPI_Send(sendbuf, sendcount \cdot n, sendtype, ...). This message is split into n equal segments, the *i*-th segment is sent to the *i*-th process in the group, and each process receives this message as above.

The send buffer is ignored for all non-root processes.

The type signature associated with sendcount, sendtype at the root must be equal to the type signature associated with recvcount, recvtype at all processes (however, the type maps may be different). This implies that the amount of data sent must be equal to the amount of data received, pairwise between each process and the root. Distinct type maps between sender and receiver are still allowed.

1 2 3

5

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34 35

36

37 38

39

40 41

42

All arguments to the function are significant on process root, while on other processes, only arguments recvbuf, recvcount, recvtype, root, and comm are significant. The arguments root and comm must have identical values on all processes.

The specification of counts and types should not cause any location on the root to be read more than once.

Rationale. Though not needed, the last restriction is imposed so as to achieve symmetry with MPI_GATHER, where the corresponding restriction (a multiple-write restriction) is necessary. (*End of rationale.*)

The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE as the value of recvbuf at the root. In such case, recvcount and recvtype are ignored, and root "sends" no data to itself. The scattered vector is still assumed to contain n segments, where n is the group size; the *root*-th segment, which root should "send to itself," is not moved.

If comm is an intercommunicator, then the call involves all processes in the intercommunicator, but with one group (group A) defining the root process. All processes in the other group (group B) pass the same value in argument root, which is the rank of the root in group A. The root passes the value MPI_ROOT in root. All other processes in group A pass the value MPI_PROC_NULL in root. Data is scattered from the root to all processes in group B. The receive buffer arguments of the processes in group B must be consistent with the send buffer argument of the root.

22 23

24

25

MPI_SCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root, comm)

25	,		
26	IN	sendbuf	address of send buffer (choice, significant only at root)
27	IN	sendcounts	non-negative integer array (of length group size) speci-
28			fying the number of elements to send to each processor
29			
30	IN	displs	integer array (of length group size). Entry i specifies
31			the displacement (relative to sendbuf) from which to
32			take the outgoing data to process i
33	IN	sendtype	data type of send buffer elements (handle)
34			
35	OUT	recvbuf	address of receive buffer (choice)
36	IN	recvcount	number of elements in receive buffer (non-negative in-
37 38			$\operatorname{teger})$
39	IN	recvtype	data type of receive buffer elements (handle)
40	IN	root	rank of sending process (integer)
41	IN	comm	communicator (handle)
42			
43	int MPT S	Scattery(void* sendbuf, i	.nt *sendcounts, int *displs,
44	1110 111 1		pe, void* recvbuf, int recvcount,
45		• • • •	pe, int root, MPI_Comm comm)
46			•
47	MPI_SCAT		DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,
48		RECVTYPE, ROOT, COM	M, IERROR)

1

 $\mathbf{2}$

3

4

5

6

 $\overline{7}$

8

9 10

11

12

13

```
<type> SENDBUF(*), RECVBUF(*)
   INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,
   COMM, IERROR
void MPI::Comm::Scatterv(const void* sendbuf, const int sendcounts[],
```

const int displs[], const MPI::Datatype& sendtype, void* recvbuf, int recvcount, const MPI::Datatype& recvtype, int root) const = 0

MPI_SCATTERV is the inverse operation to MPI_GATHERV.

MPI_SCATTERV extends the functionality of MPI_SCATTER by allowing a varying count of data to be sent to each process, since sendcounts is now an array. It also allows more flexibility as to where the data is taken from on the root, by providing an additional argument, displs.

If comm is an intracommunicator, the outcome is as if the root executed n send operations.

```
MPI_Send(sendbuf + displs[i] · extent(sendtype), sendcounts[i], sendtype, i, ...),
```

and each process executed a receive,

MPI_Recv(recvbuf, recvcount, recvtype, i, ...).

The send buffer is ignored for all non-root processes.

The type signature implied by sendcount[i], sendtype at the root must be equal to the type signature implied by recvcount, recvtype at process i (however, the type maps may be different). This implies that the amount of data sent must be equal to the amount of data received, pairwise between each process and the root. Distinct type maps between sender and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes, only arguments recvbuf, recvcount, recvtype, root, and comm are significant. The arguments root and comm must have identical values on all processes.

The specification of counts, types, and displacements should not cause any location on the root to be read more than once.

The "in place" option for intracommunicators is specified by passing MPI_IN_PLACE as the value of recvbuf at the root. In such case, recvcount and recvtype are ignored, and root "sends" no data to itself. The scattered vector is still assumed to contain n segments, where n is the group size; the *root*-th segment, which root should "send to itself," is not moved.

If comm is an intercommunicator, then the call involves all processes in the intercom-36 municator, but with one group (group A) defining the root process. All processes in the 37 other group (group B) pass the same value in argument root, which is the rank of the root 38 in group A. The root passes the value MPI_ROOT in root. All other processes in group A pass the value MPI_PROC_NULL in root. Data is scattered from the root to all processes in group B. The receive buffer arguments of the processes in group B must be consistent with the send buffer argument of the root.

40 41 4243 5.6.1 Examples using MPI_SCATTER, MPI_SCATTERV 4445The examples in this section use intracommunicators. 46

Example 5.11 The reverse of Example 5.2. Scatter sets of 100 ints from the root to each process in the group. See Figure 5.9.

2

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

 24

25

26

27

28

29

30

31

32

33

34

35

39

47

```
100
                                   100
                                           100
1
2
                                                                  all processes
3
4
                             100
                                        100
                                   100
5
                                                                  at root
6
7
                            sendbuf
8
9
         Figure 5.9: The root process scatters sets of 100 ints to each process in the group.
10
11
12
          MPI_Comm comm;
          int gsize,*sendbuf;
13
          int root, rbuf[100];
14
15
          . . .
          MPI_Comm_size(comm, &gsize);
16
          sendbuf = (int *)malloc(gsize*100*sizeof(int));
17
18
           . . .
19
          MPI_Scatter(sendbuf, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);
20
21
      Example 5.12 The reverse of Example 5.5. The root process scatters sets of 100 ints to
22
      the other processes, but the sets of 100 are stride ints apart in the sending buffer. Requires
23
      use of MPI_SCATTERV. Assume stride \geq 100. See Figure 5.10.
24
25
          MPI_Comm comm;
26
          int gsize,*sendbuf;
27
          int root, rbuf[100], i, *displs, *scounts;
28
29
          . . .
30
31
          MPI_Comm_size(comm, &gsize);
32
          sendbuf = (int *)malloc(gsize*stride*sizeof(int));
33
           . . .
34
          displs = (int *)malloc(gsize*sizeof(int));
35
          scounts = (int *)malloc(gsize*sizeof(int));
36
          for (i=0; i<gsize; ++i) {</pre>
37
               displs[i] = i*stride;
38
               scounts[i] = 100;
39
          }
40
          MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, rbuf, 100, MPI_INT,
41
                                                                               root, comm);
42
43
44
      Example 5.13 The reverse of Example 5.9. We have a varying stride between blocks at
45
      sending (root) side, at the receiving side we receive into the i-th column of a 100 \times 150 C
46
      array. See Figure 5.11.
47
48
          MPI_Comm comm;
```

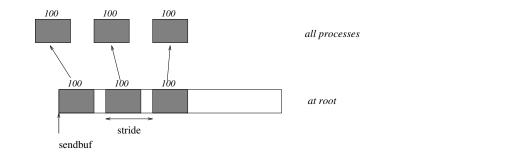


Figure 5.10: The root process scatters sets of 100 ints, moving by stride ints from send to send in the scatter.

```
int gsize, recvarray[100][150], *rptr;
int root, *sendbuf, myrank, bufsize, *stride;
MPI_Datatype rtype;
int i, *displs, *scounts, offset;
. . .
MPI_Comm_size(comm, &gsize);
MPI_Comm_rank(comm, &myrank);
stride = (int *)malloc(gsize*sizeof(int));
. . .
/* stride[i] for i = 0 to gsize-1 is set somehow
 * sendbuf comes from elsewhere
 */
. . .
displs = (int *)malloc(gsize*sizeof(int));
scounts = (int *)malloc(gsize*sizeof(int));
offset = 0;
for (i=0; i<gsize; ++i) {</pre>
    displs[i] = offset;
    offset += stride[i];
    scounts[i] = 100 - i;
}
/* Create datatype for the column we are receiving
 */
MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &rtype);
MPI_Type_commit(&rtype);
rptr = &recvarray[0][myrank];
MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, rptr, 1, rtype,
                                                          root, comm);
```

1

2 3 4

5

6 7

8 9

10

11 12

13

14

15

16 17

18

19 20

21 22

23

24 25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

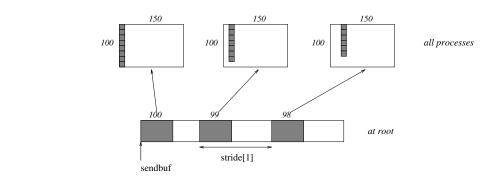



Figure 5.11: The root scatters blocks of 100-i ints into column i of a 100×150 C array. At the sending side, the blocks are stride[i] ints apart.

```
5.7 Gather-to-all
```


IN	sendbuf	starting address of send buffer (choice)		
IN	sendcount	number of elements in send buffer (non-negative inte-		
		$\operatorname{ger})$		
IN	sendtype	data type of send buffer elements (handle)		
OUT	recvbuf	address of receive buffer (choice)		
IN	recvcount	number of elements received from any process (non-negative integer)		
IN	recvtype	data type of receive buffer elements (handle)		
IN	comm	communicator (handle)		
int MPI_	Allgather(void* sendb	ouf, int sendcount, MPI_Datatype sendtype,		
<pre>void* recvbuf, int recvcount, MPI_Datatype recvtype,</pre>				
MPI_Comm comm)				
MPI_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,				
COMM, IERROR)				
<type> SENDBUF(*), RECVBUF(*)</type>				
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR				
void MPI::Comm::Allgather(const void* sendbuf, int sendcount, const				
	MPI::Datatype& s	sendtype, void* recvbuf, int recvcount,		
<pre>const MPI::Datatype& recvtype) const = 0</pre>				
MPI	ALLGATHER can be tho	ught of as MPI_GATHER, but where all processes receive		
		The block of data sent from the j-th process is received		
· · · · · · · · · · · · · · · · · · ·	0	0 1		
The t	ype signature associated	with $sendcount,sendtype,\mathrm{at}\;\mathrm{a}\;\mathrm{process}\;\mathrm{must}\;\mathrm{be}\;\mathrm{equal}\;\mathrm{to}$		
the type signature associated with recvcount, recvtype at any other process.				
	IN IN OUT IN IN IN IN IN MPI_ALLG. <type INTER void MPI the result, by every p The t</type 	<pre>IN sendcount IN sendtype OUT recvbuf IN recvcount IN recvtype IN comm int MPI_Allgather(void* sendt void* recvbuf, fr MPI_Comm comm) MPI_ALLGATHER(SENDBUF, SENDCO COMM, IERROR) <type> SENDBUF(*), RECVBU INTEGER SENDCOUNT, SENDTY void MPI::Comm::Allgather(con MPI::Datatype& fr const MPI::</type></pre>		

 $\mathbf{2}$

 $\overline{7}$

If comm is an intracommunicator, the outcome of a call to MPI_ALLGATHER(...) is as if all processes executed **n** calls to

```
MPI_GATHER(sendbuf,sendcount,sendtype,recvbuf,recvcount,
```

```
recvtype,root,comm),
```

for root = 0 , ..., n-1. The rules for correct usage of MPI_ALLGATHER are easily found from the corresponding rules for MPI_GATHER.

The "in place" option for intracommunicators is specified by passing the value MPI_IN_PLACE to the argument sendbuf at all processes. sendcount and sendtype are ignored. Then the input data of each process is assumed to be in the area where that process would receive its own contribution to the receive buffer.

If comm is an intercommunicator, then each process in group A contributes a data item; these items are concatenated and the result is stored at each process in group B. Conversely the concatenation of the contributions of the processes in group B is stored at each process in group A. The send buffer arguments in group A must be consistent with the receive buffer arguments in group B, and vice versa.

Advice to users. The communication pattern of MPI_ALLGATHER executed on an intercommunication domain need not be symmetric. The number of items sent by processes in group A (as specified by the arguments sendcount, sendtype in group A and the arguments recvcount, recvtype in group B), need not equal the number of items sent by processes in group B (as specified by the arguments sendcount, sendtype in group B and the arguments recvcount, recvtype in group A). In particular, one can move data in only one direction by specifying sendcount = 0 for the communication in the reverse direction.

(End of advice to users.)

			00
IN	sendbuf	starting address of send buffer (choice)	31
IN	sendcount	number of elements in send buffer (non-negative inte-	32
		ger)	33
		- ,	34
IN	sendtype	data type of send buffer elements (handle)	35
OUT	recvbuf	address of receive buffer (choice)	36
IN	recvcounts	non-negative integer array (of length group size) con-	37
		taining the number of elements that are received from	38
		each process	39
IN	displs	integer array (of length group size). Entry i specifies	40
		the displacement (relative to recvbuf) at which to place	41
		the incoming data from process i	42
		the incoming data from process 1	43
IN	recvtype	data type of receive buffer elements (handle)	44
IN	comm	communicator (handle)	45
			46

 24

1 MPI_Datatype recvtype, MPI_Comm comm) $\mathbf{2}$ MPI_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS, 3 RECVTYPE, COMM, IERROR) 4 <type> SENDBUF(*), RECVBUF(*) 5INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM, 6 IERROR 7 8 void MPI::Comm::Allgatherv(const void* sendbuf, int sendcount, const 9 MPI::Datatype& sendtype, void* recvbuf, 10 const int recvcounts[], const int displs[], 11 const MPI::Datatype& recvtype) const = 0 12 MPI_ALLGATHERV can be thought of as MPI_GATHERV, but where all processes re-13 ceive the result, instead of just the root. The block of data sent from the j-th process is 14 received by every process and placed in the j-th block of the buffer recvbuf. These blocks 15need not all be the same size. 16 The type signature associated with sendcount, sendtype, at process j must be equal to 17 the type signature associated with recvcounts[j], recvtype at any other process. 18 If comm is an intracommunicator, the outcome is as if all processes executed calls to 19 MPI_GATHERV(sendbuf,sendcount,sendtype,recvbuf,recvcounts,displs, 20recvtype,root,comm), 2122 for root = 0, ..., n-1. The rules for correct usage of MPI_ALLGATHERV are easily 23 found from the corresponding rules for MPI_GATHERV. 24The "in place" option for intracommunicators is specified by passing the value 25MPI_IN_PLACE to the argument sendbuf at all processes. sendcount and sendtype are ignored. 26Then the input data of each process is assumed to be in the area where that process would 27receive its own contribution to the receive buffer. 28If comm is an intercommunicator, then each process in group A contributes a data 29 item; these items are concatenated and the result is stored at each process in group B. 30 Conversely the concatenation of the contributions of the processes in group B is stored at 31each process in group A. The send buffer arguments in group A must be consistent with 32 the receive buffer arguments in group B, and vice versa. 33 34 5.7.1 Examples using MPI_ALLGATHER, MPI_ALLGATHERV 35 The examples in this section use intracommunicators. 36 37 **Example 5.14** The all-gather version of Example 5.2. Using MPI_ALLGATHER, we will 38 gather 100 ints from every process in the group to every process. 39 MPI_Comm comm; 40 int gsize,sendarray[100]; 41 int *rbuf; 42. . . 43 MPI_Comm_size(comm, &gsize); 44 rbuf = (int *)malloc(gsize*100*sizeof(int)); 45MPI_Allgather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, comm); 46 47After the call, every process has the group-wide concatenation of the sets of data. 48

CHAPTER 5. COLLECTIVE COMMUNICATION

5.8 All-to-All Scatter/Gather

			2			
			3			
MPI_ALI	_TOALL(sendbuf, sendcou	int, sendtype, recvbuf, recvcount, recvtype, comm)	4			
IN	sendbuf	starting address of send buffer (choice)	5 6			
IN	sendcount	number of elements sent to each process (non-negative integer)	7 8			
IN	sendtype	data type of send buffer elements (handle)	9			
OUT	recvbuf	address of receive buffer (choice)	10 11			
IN	recvcount		11			
IIN	recvcount	number of elements received from any process (non-negative integer)	13 14			
IN	recvtype	data type of receive buffer elements (handle)	15			
IN	comm	communicator (handle)	16			
			17			
int MPI		ouf, int sendcount, MPI_Datatype sendtype, int recvcount, MPI_Datatype recvtype,	18 19 20			
<ty< td=""><td>COMM, IERROR) pe> SENDBUF(*), RECVE</td><td>DUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, BUF(*) TYPE, RECVCOUNT, RECVTYPE, COMM, IERROR</td><td>21 22 23 24 25</td></ty<>	COMM, IERROR) pe> SENDBUF(*), RECVE	DUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, BUF(*) TYPE, RECVCOUNT, RECVTYPE, COMM, IERROR	21 22 23 24 25			
void MP	MPI::Datatype&	nst void* sendbuf, int sendcount, const sendtype, void* recvbuf, int recvcount, atype& recvtype) const = 0	26 27 28			
sends dis by proce The the type that the every pa If cc	stinct data to each of the ss j and is placed in the type signature associate signature associated wir amount of data sent must ir of processes. As usual	d with sendcount, sendtype, at a process must be equal to th recvcount, recvtype at any other process. This implies t be equal to the amount of data received, pairwise between , however, the type maps may be different. cator, the outcome is as if each process executed a send to	29 30 31 32 33 34 35 36 37 38			
MP	$\texttt{I_Send}(\texttt{sendbuf} + \texttt{i} \cdot \texttt{sendbuf})$	$\texttt{ndcount} \cdot \texttt{extent}(\texttt{sendtype}), \texttt{sendcount}, \texttt{sendtype}, \texttt{i},),$	39 40			
and a receive from every other process with a call to,						
MP	$I_\texttt{Recv}(\texttt{recvbuf}+\texttt{i}\cdot\texttt{rec})$	$cvcount \cdot extent(recvtype), recvcount, recvtype, i,).$	42 43			
A 11 .	noruments en all process	a are significant. The argument comm must have identical	43 44			
values or	all processes.	es are significant. The argument comm must have identical	45 46			
If co	No "in place" option is supported. If comm is an intercommunicator, then the outcome is as if each process in group A ends a message to each process in group B, and vice versa. The j-th send buffer of process					

	20	0					
1 2 3	i in group A should be consistent with the i-th receive buffer of process j in group B, and vice versa.						
4 5 6 7	the nu not eq	Advice to users. When all-to-all is executed on an intercommunication domain, then the number of data items sent from processes in group A to processes in group B need not equal the number of items sent in the reverse direction. In particular, one can have unidirectional communication by specifying sendcount $= 0$ in the reverse direction.					
8 9 10 11	(End	(End of advice to users.)					
12 13	MPI_ALLTC type, comm		sdispls, sendtype, recvbuf, recvcounts, rdispls, recv-				
14	IN	sendbuf	starting address of send buffer (choice)				
15 16 17 18	IN	sendcounts	non-negative integer array equal to the group size spec- ifying the number of elements to send to each proces- sor				
19 20 21	IN	sdispls	integer array (of length group size). Entry j specifies the displacement (relative to sendbuf) from which to take the outgoing data destined for process j				
22	IN	sendtype	data type of send buffer elements (handle)				
23 24	OUT	recvbuf	address of receive buffer (choice)				
25 26 27	IN	recvcounts	non-negative integer array equal to the group size spec- ifying the number of elements that can be received from each processor				
28 29 30	IN	rdispls	integer array (of length group size). Entry i specifies the displacement (relative to recvbuf) at which to place the incoming data from process i				
31 32	IN	recvtype	data type of receive buffer elements (handle)				
33	IN	comm	communicator (handle)				
34 35 36 37	<pre>int MPI_Alltoallv(void* sendbuf, int *sendcounts, int *sdispls, MPI_Datatype sendtype, void* recvbuf, int *recvcounts, int *rdispls, MPI_Datatype recvtype, MPI_Comm comm)</pre>						
38 39 40 41 42 43	<pre>MPI_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,</pre>						
44 45 46 47 48	void MPI::	<pre>void MPI::Comm::Alltoallv(const void* sendbuf, const int sendcounts[],</pre>					

CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_ALLTOALLV adds flexibility to MPI_ALLTOALL in that the location of data for the send is specified by sdispls and the location of the placement of the data on the receive side is specified by rdispls.

If comm is an intracommunicator, then the j-th block sent from process i is received by process j and is placed in the i-th block of recvbuf. These blocks need not all have the same size.

The type signature associated with sendcount[j], sendtype at process i must be equal to the type signature associated with recvcount[i], recvtype at process j. This implies that the amount of data sent must be equal to the amount of data received, pairwise between every pair of processes. Distinct type maps between sender and receiver are still allowed.

The outcome is as if each process sent a message to every other process with,

```
MPI\_Send(sendbuf + displs[i] \cdot extent(sendtype), sendcounts[i], sendtype, i, ...),
```

and received a message from every other process with a call to

 $MPI_Recv(recvbuf + displs[i] \cdot extent(recvtype), recvcounts[i], recvtype, i, ...).$

All arguments on all processes are significant. The argument **comm** must have identical values on all processes.

No "in place" option is supported.

If comm is an intercommunicator, then the outcome is as if each process in group A sends a message to each process in group B, and vice versa. The j-th send buffer of process i in group A should be consistent with the i-th receive buffer of process j in group B, and vice versa.

Rationale. The definitions of MPI_ALLTOALL and MPI_ALLTOALLV give as much flexibility as one would achieve by specifying **n** independent, point-to-point communications, with two exceptions: all messages use the same datatype, and messages are scattered from (or gathered to) sequential storage. (*End of rationale.*)

Advice to implementors. Although the discussion of collective communication in terms of point-to-point operation implies that each message is transferred directly from sender to receiver, implementations may use a tree communication pattern. Messages can be forwarded by intermediate nodes where they are split (for scatter) or concatenated (for gather), if this is more efficient. (End of advice to implementors.)

1 2	MPI_ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recv- types, comm)						
3 4	IN	sendbuf	starting address of send buffer (choice)				
4 5 6 7	IN	sendcounts	integer array equal to the group size specifying the number of elements to send to each processor (array of non-negative integers)				
8 9 10 11	IN	sdispls	integer array (of length group size). Entry j specifies the displacement in bytes (relative to sendbuf) from which to take the outgoing data destined for process j (array of integers)				
12 13 14 15	IN	sendtypes	array of datatypes (of length group size). Entry j specifies the type of data to send to process j (array of handles)				
16	OUT	recvbuf	address of receive buffer (choice)				
17 18 19	IN	recvcounts	integer array equal to the group size specifying the number of elements that can be received from each processor (array of non-negative integers)				
20 21 22 23 24	IN	rdispls	integer array (of length group size). Entry i specifies the displacement in bytes (relative to recvbuf) at which to place the incoming data from process i (array of integers)				
25 26 27	IN	recvtypes	array of datatypes (of length group size). Entry i specifies the type of data received from process i (array of handles)				
28 29	IN	comm	communicator (handle)				
30 31 32 33	<pre>int MPI_Alltoallw(void *sendbuf, int sendcounts[], int sdispls[], MPI_Datatype sendtypes[], void *recvbuf, int recvcounts[], int rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm)</pre>						
33 34 35 36 37 38	<pre>MPI_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,</pre>						
39 40 41 42 43	<pre>void MPI::Comm::Alltoallw(const void* sendbuf, const int sendcounts[],</pre>						
44 45 46 47 48	MPI_ALLTOALLW is the most general form of All-to-all. Like MPI_TYPE_CREATE_STRUCT, the most general type constructor, MPI_ALLTOALLW al- lows separate specification of count, displacement and datatype. In addition, to allow max- imum flexibility, the displacement of blocks within the send and receive buffers is specified in bytes.						

If comm is an intracommunicator, then the j-th block sent from process i is received by process j and is placed in the i-th block of recvbuf. These blocks need not all have the same size.

The type signature associated with sendcounts[j], sendtypes[j] at process i must be equal to the type signature associated with recvcounts[i], recvtypes[i] at process j. This implies that the amount of data sent must be equal to the amount of data received, pairwise between every pair of processes. Distinct type maps between sender and receiver are still allowed.

The outcome is as if each process sent a message to every other process with

```
MPI_Send(sendbuf + sdispls[i], sendcounts[i], sendtypes[i], i, ...),
```

and received a message from every other process with a call to

```
MPI_Recv(recvbuf + rdispls[i], recvcounts[i], recvtypes[i], i, ...).
```

All arguments on all processes are significant. The argument comm must describe the same communicator on all processes.

No "in place" option is supported.

If comm is an intercommunicator, then the outcome is as if each process in group A sends a message to each process in group B, and vice versa. The j-th send buffer of process i in group A should be consistent with the i-th receive buffer of process j in group B, and vice versa.

Rationale. The MPI_ALLTOALLW function generalizes several MPI functions by carefully selecting the input arguments. For example, by making all but one process have sendcounts[i] = 0, this achieves an MPI_SCATTERW function. (*End of rationale.*)

5.9 Global Reduction Operations

The functions in this section perform a global reduce operation (such as sum, max, logical AND, etc.) across all members of a group. The reduction operation can be either one of a predefined list of operations, or a user-defined operation. The global reduction functions come in several flavors: a reduce that returns the result of the reduction to one member of a group, an all-reduce that returns this result to all members of a group, and two scan (parallel prefix) operations. In addition, a reduce-scatter operation combines the functionality of a reduce and of a scatter operation.

```
32
                                          CHAPTER 5. COLLECTIVE COMMUNICATION
1
     5.9.1
            Reduce
\mathbf{2}
3
4
     MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)
5
       IN
                  sendbuf
                                              address of send buffer (choice)
6
       OUT
7
                  recvbuf
                                              address of receive buffer (choice, significant only at
8
                                              root)
9
       IN
                  count
                                              number of elements in send buffer (non-negative inte-
10
                                              ger)
11
                                              data type of elements of send buffer (handle)
       IN
                  datatype
12
       IN
                                              reduce operation (handle)
13
                  ор
14
       IN
                                              rank of root process (integer)
                  root
15
       IN
                  comm
                                              communicator (handle)
16
17
     int MPI_Reduce(void* sendbuf, void* recvbuf, int count,
18
                     MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)
19
20
     MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)
21
          <type> SENDBUF(*), RECVBUF(*)
22
          INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR
23
     void MPI::Comm::Reduce(const void* sendbuf, void* recvbuf, int count,
24
                     const MPI::Datatype& datatype, const MPI::Op& op, int root)
25
26
                     const = 0
27
          If comm is an intracommunicator, MPI_REDUCE combines the elements provided in the
28
     input buffer of each process in the group, using the operation op, and returns the combined
29
     value in the output buffer of the process with rank root. The input buffer is defined by
30
     the arguments sendbuf, count and datatype; the output buffer is defined by the arguments
31
```

recvbuf, count and datatype; both have the same number of elements, with the same type. 32 The routine is called by all group members using the same arguments for count, datatype, 33 op, root and comm. Thus, all processes provide input buffers and output buffers of the same 34 length, with elements of the same type. Each process can provide one element, or a sequence 35 of elements, in which case the combine operation is executed element-wise on each entry of 36 the sequence. For example, if the operation is MPI_MAX and the send buffer contains two 37 elements that are floating point numbers (count = 2 and datatype = MPI_FLOAT), then 38 $\operatorname{recvbuf}(1) = \operatorname{global}\max(\operatorname{sendbuf}(1))$ and $\operatorname{recvbuf}(2) = \operatorname{global}\max(\operatorname{sendbuf}(2))$. 39

Section 5.9.2, lists the set of predefined operations provided by MPI. That section also enumerates the datatypes each operation can be applied to. In addition, users may define their own operations that can be overloaded to operate on several datatypes, either basic or derived. This is further explained in Section 5.9.5.

The operation **op** is always assumed to be associative. All predefined operations are also assumed to be commutative. Users may define operations that are assumed to be associative, but not commutative. The "canonical" evaluation order of a reduction is determined by the ranks of the processes in the group. However, the implementation can take advantage of associativity, or associativity and commutativity in order to change the order of evaluation. This may change the result of the reduction for operations that are not strictly associative and commutative, such as floating point addition.

Advice to implementors. It is strongly recommended that MPI_REDUCE be implemented so that the same result be obtained whenever the function is applied on the same arguments, appearing in the same order. Note that this may prevent optimizations that take advantage of the physical location of processors. (End of advice to implementors.)

The datatype argument of MPI_REDUCE must be compatible with op. Predefined operators work only with the MPI types listed in Section 5.9.2 and Section 5.9.4. Furthermore, the datatype and op given for predefined operators must be the same on all processes.

Note that it is possible for users to supply different user-defined operations to MPI_REDUCE in each process. MPI does not define which operations are used on which operands in this case. User-defined operators may operate on general, derived datatypes. In this case, each argument that the reduce operation is applied to is one element described by such a datatype, which may contain several basic values. This is further explained in Section 5.9.5.

Advice to users. Users should make no assumptions about how MPI_REDUCE is implemented. Safest is to ensure that the same function is passed to MPI_REDUCE by each process. (*End of advice to users.*)

Overlapping datatypes are permitted in "send" buffers. Overlapping datatypes in "receive" buffers are erroneous and may give unpredictable results.

The "in place" option for intracommunicators is specified by passing the value MPI_IN_PLACE to the argument sendbuf at the root. In such case, the input data is taken at the root from the receive buffer, where it will be replaced by the output data.

If comm is an intercommunicator, then the call involves all processes in the intercommunicator, but with one group (group A) defining the root process. All processes in the other group (group B) pass the same value in argument root, which is the rank of the root in group A. The root passes the value MPI_ROOT in root. All other processes in group A pass the value MPI_PROC_NULL in root. Only send buffer arguments are significant in group B and only receive buffer arguments are significant at the root.

5.9.2 Predefined Reduction Operations

The following predefined operations are supplied for MPI_REDUCE and related functions MPI_ALLREDUCE, MPI_REDUCE_SCATTER, MPI_SCAN, and MPI_EXSCAN. These operations are invoked by placing the following in op.

Name	Meaning
MPI_MAX MPI_MIN MPI_SUM MPI_PROD MPI_LAND MPI_BAND	maximum minimum sum product logical and bit-wise and

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

 24

25

26

27

28

29

30

31

32

33 34

35 36

37

38

1	MPI_LOR	logical or
2	MPI_BOR	bit-wise or
3	MPI_LXOR	logical exclusive or (xor)
4	MPI_BXOR	bit-wise exclusive or (xor)
5	MPI_MAXLOC	max value and location
6	MPI_MINLOC	min value and location
7	The two operations MPI MINLOC and	MPI_MAXLOC are discussed separately in Sec-
8	_	ations, we enumerate below the allowed combi-
9		rst, define groups of MPI basic datatypes in the
10	following way.	
11		
12		
13	C integer:	MPI_INT, MPI_LONG, MPI_SHORT,
14	5	MPI_UNSIGNED_SHORT, MPI_UNSIGNED,
15		MPI_UNSIGNED_LONG,
16		MPI_LONG_LONG_INT,
17		MPI_LONG_LONG (as synonym),
18		MPI_UNSIGNED_LONG_LONG,
19		MPI_SIGNED_CHAR, MPI_UNSIGNED_CHAR
20	Fortran integer:	MPI_INTEGER
21	Floating point:	MPI_FLOAT, MPI_DOUBLE, MPI_REAL,
22		MPI_DOUBLE_PRECISION
23		MPI_LONG_DOUBLE
24	Logical:	MPI_LOGICAL
25	Complex:	MPI_COMPLEX
26	Byte:	MPI_BYTE
27	Now, the valid datatypes for each opti	ion is specified below.
28		1
29		
30	Ор	Allowed Types
31		
32	MPI_MAX, MPI_MIN	C integer, Fortran integer, Floating point
33	MPI_SUM, MPI_PROD	C integer, Fortran integer, Floating point, Complex
34	MPI_LAND, MPI_LOR, MPI_LXOR	C integer, Logical
35	MPI_BAND, MPI_BOR, MPI_BXOR	C integer, Fortran integer, Byte
36	The following examples use intracomm	nunicators.
37		
38	Example 5.15 A routine that computes the function of the second	he dot product of two vectors that are distributed
39	across a group of processes and returns the	-
40		
41	SUBROUTINE PAR_BLAS1(m, a, b, c, con	nm)
42	REAL a(m), b(m) ! local slice	of array
43	REAL c ! result (at r	node zero)
44	REAL sum	
45	INTEGER m, comm, i, ierr	
46		
47	! local sum	
48	sum = 0.0	

```
D0 i = 1, m
   sum = sum + a(i)*b(i)
END D0
! global sum
CALL MPI_REDUCE(sum, c, 1, MPI_REAL, MPI_SUM, 0, comm, ierr)
RETURN
```

Example 5.16 A routine that computes the product of a vector and an array that are distributed across a group of processes and returns the answer at node zero.

```
SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)
REAL a(m), b(m,n)
                     ! local slice of array
REAL c(n)
                      ! result
REAL sum(n)
INTEGER n, comm, i, j, ierr
! local sum
DO j= 1, n
  sum(j) = 0.0
  D0 i = 1, m
    sum(j) = sum(j) + a(i)*b(i,j)
  END DO
END DO
! global sum
CALL MPI_REDUCE(sum, c, n, MPI_REAL, MPI_SUM, 0, comm, ierr)
! return result at node zero (and garbage at the other nodes)
RETURN
```

5.9.3 Signed Characters and Reductions

The types MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR can be used in reduction operations. MPI_CHAR (which represents printable characters) cannot be used in reduction operations. In a heterogeneous environment, MPI_CHAR and MPI_WCHAR will be translated so as to preserve the printable character, whereas MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR will be translated so as to preserve the integer value.

Advice to users. The types MPI_CHAR and MPI_CHARACTER are intended for characters, and so will be translated to preserve the printable representation, rather than the integer value, if sent between machines with different character codes. The types MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR should be used in C if the integer value should be preserved. (*End of advice to users.*)

1 2

3

4

5

5.9.4 MINLOC and MAXLOC

The operator MPI_MINLOC is used to compute a global minimum and also an index attached to the minimum value. MPI_MAXLOC similarly computes a global maximum and index. One application of these is to compute a global minimum (maximum) and the rank of the process containing this value.

6 7 8

9 10

13 14

24 25

26 27

The operation that defines MPI_MAXLOC is:

$$\left(\begin{array}{c} u\\i\end{array}\right)\circ\left(\begin{array}{c} v\\j\end{array}\right)=\left(\begin{array}{c} w\\k\end{array}\right)$$

¹¹ where

 $w = \max(u, v)$

and

$$k = \begin{cases} i & \text{if } u > v \\ \min(i, j) & \text{if } u = v \\ j & \text{if } u < v \end{cases}$$

MPI_MINLOC is defined similarly:

$$\left(\begin{array}{c} u\\i\end{array}\right)\circ\left(\begin{array}{c} v\\j\end{array}\right)=\left(\begin{array}{c} w\\k\end{array}\right)$$

where

$$w = \min(u, v)$$

and

$$k = \begin{cases} i & \text{if } u < v \\ \min(i, j) & \text{if } u = v \\ j & \text{if } u > v \end{cases}$$

32 Both operations are associative and commutative. Note that if MPI_MAXLOC is applied 33 to reduce a sequence of pairs $(u_0,0), (u_1,1), \ldots, (u_{n-1},n-1)$, then the value returned is 34 (u, r), where $u = \max_i u_i$ and r is the index of the first global maximum in the sequence. 35 Thus, if each process supplies a value and its rank within the group, then a reduce operation 36 with $op = MPI_MAXLOC$ will return the maximum value and the rank of the first process with 37 that value. Similarly, MPI_MINLOC can be used to return a minimum and its index. More 38 generally, MPI_MINLOC computes a *lexicographic minimum*, where elements are ordered 39 according to the first component of each pair, and ties are resolved according to the second 40 component.

The reduce operation is defined to operate on arguments that consist of a pair: value and index. For both Fortran and C, types are provided to describe the pair. The potentially mixed-type nature of such arguments is a problem in Fortran. The problem is circumvented, for Fortran, by having the MPI-provided type consist of a pair of the same type as value, and coercing the index to this type also. In C, the MPI-provided pair type has distinct types and the index is an int.

⁴⁷ In order to use MPI_MINLOC and MPI_MAXLOC in a reduce operation, one must provide ⁴⁸ a **datatype** argument that represents a pair (value and index). MPI provides nine such predefined datatypes. The operations MPI_MAXLOC and MPI_MINLOC can be used with each of the following datatypes.

		0
Fortran:		4
Name	Description	5
MPI_2REAL	pair of REALs	6
MPI_2DOUBLE_PRECISION	pair of DOUBLE PRECISION variables	7
MPI_2INTEGER	pair of INTEGERs	8
		9
		10
C:		11
Name	Description	12
MPI_FLOAT_INT	float and int	13
MPI_DOUBLE_INT	double and int	14
MPI_LONG_INT	long and int	15
MPI_2INT	pair of int	16
MPI_SHORT_INT	short and int	17
MPI_LONG_DOUBLE_INT	long double and int	18
	C C	19
The datatype MPI_2REAL is $as if defined and the second s$	fined by the following (see Section ??).	20
		20
MPI_TYPE_CONTIGUOUS(2, MPI_REAL, M	IPI_2REAL)	21
Cincilar statements and for MDL ON		22
	NTEGER, MPI_2DOUBLE_PRECISION, and MPI_2INT.	23 24
I ne datatype MPI_FLOAT_INT is as	if defined by the following sequence of instructions.	
type[0] = MPI_FLOAT		25
type[1] = MPI_INT		26
disp[0] = 0		27
disp[1] = sizeof(float)		28
block[0] = 1		29
block[1] = 1		30
MPI_TYPE_STRUCT(2, block, disp, ty	ΜΡΙ ΕΙ ΠΔΤ ΙΝΤ)	31
In I_IIII_DIMOUT(2, DIOCK, disp, by	pe, millionilini)	32
Similar statements apply for MPI_LONG_	INT and MPI_DOUBLE_INT.	33
The following examples use intracor	nmunicators.	34
		35
Example 5.17 Each process has an arra	ay of 30 doubles, in C. For each of the 30 locations,	36
compute the value and rank of the proce	ess containing the largest value.	37
		38
		39
<pre>/* each process has an array c</pre>	of 30 double: ain[30]	40
*/		41
<pre>double ain[30], aout[30];</pre>		42
<pre>int ind[30];</pre>		43
struct {		44
double val;		45
int rank;		46
} in[30], out[30];		47
int i, myrank, root;		48
, , , , ,		

 $1 \\ 2$

```
1
\mathbf{2}
         MPI_Comm_rank(comm, &myrank);
3
         for (i=0; i<30; ++i) {</pre>
4
              in[i].val = ain[i];
5
              in[i].rank = myrank;
6
         }
7
         MPI_Reduce(in, out, 30, MPI_DOUBLE_INT, MPI_MAXLOC, root, comm);
8
         /* At this point, the answer resides on process root
9
           */
10
         if (myrank == root) {
11
              /* read ranks out
12
               */
13
              for (i=0; i<30; ++i) {
14
                  aout[i] = out[i].val;
15
                  ind[i] = out[i].rank;
16
              }
17
         }
18
19
     Example 5.18 Same example, in Fortran.
20
21
          . . .
22
          ! each process has an array of 30 double: ain(30)
23
24
         DOUBLE PRECISION ain(30), aout(30)
25
         INTEGER ind(30)
26
         DOUBLE PRECISION in(2,30), out(2,30)
27
         INTEGER i, myrank, root, ierr
28
29
         CALL MPI_COMM_RANK(comm, myrank, ierr)
30
         DO I=1, 30
31
              in(1,i) = ain(i)
32
              in(2,i) = myrank
                                    ! myrank is coerced to a double
33
         END DO
34
35
         CALL MPI_REDUCE(in, out, 30, MPI_2DOUBLE_PRECISION, MPI_MAXLOC, root,
36
                                                                           comm, ierr)
37
         ! At this point, the answer resides on process root
38
39
         IF (myrank .EQ. root) THEN
40
              ! read ranks out
41
              DO I= 1, 30
42
                  aout(i) = out(1,i)
43
                  ind(i) = out(2,i) ! rank is coerced back to an integer
44
              END DO
45
         END IF
46
```

Example 5.19 Each process has a non-empty array of values. Find the minimum global
 value, the rank of the process that holds it and its index on this process.

```
#define LEN
               1000
float val[LEN];
                       /* local array of values */
int count;
                       /* local number of values */
int myrank, minrank, minindex;
float minval;
struct {
    float value;
          index;
    int
} in, out;
    /* local minloc */
in.value = val[0];
in.index = 0;
for (i=1; i < count; i++)</pre>
    if (in.value > val[i]) {
        in.value = val[i];
        in.index = i;
    }
    /* global minloc */
MPI_Comm_rank(comm, &myrank);
in.index = myrank*LEN + in.index;
MPI_Reduce(in, out, 1, MPI_FLOAT_INT, MPI_MINLOC, root, comm);
    /* At this point, the answer resides on process root
     */
if (myrank == root) {
    /* read answer out
     */
    minval = out.value;
    minrank = out.index / LEN;
    minindex = out.index % LEN;
}
```

Rationale. The definition of MPI_MINLOC and MPI_MAXLOC given here has the advantage that it does not require any special-case handling of these two operations: they are handled like any other reduce operation. A programmer can provide his or her own definition of MPI_MAXLOC and MPI_MINLOC, if so desired. The disadvantage is that values and indices have to be first interleaved, and that indices and values have to be coerced to the same type, in Fortran. (*End of rationale.*)

1

2 3

4

5

6

7 8

9

10

11

12

13

14 15

16

17

18

19

20 21

22

23 24

25

26

27

28 29

30

31

32 33

34

35

36

37

38

39

40

40		CHAPTER 5.	COLLECTIVE COMMUNICATION
5.9.5 U	ser-Defined Reduction Oper	ations	
MPI_OP_	CREATE(function, commute,	op)	
IN	function	user defined	l function (function)
IN	commute	true if com	mutative; false otherwise.
OUT	ор	operation (I	handle)
MPI_OP_C	Op_create(MPI_User_func REATE(FUNCTION, COMMUTE RNAL FUNCTION		on, int commute, MPI_Op *op)
LOGI	CAL COMMUTE GER OP, IERROR		
void MPI	::Op::Init(MPI::User_fun	nction* funct	tion, bool commute)
sequently MPI_SCA If commute process ra talking ac of evaluat funct invec, inor The	be used in MPI_REDUCE, \mathbb{N} , and MPI_EXSCAN. The te = true, then the operation = false, then the order of ank order, beginning with product of the associativity where the change of the associativity where the change of the true that the true of the true o	MPI_ALLREDU user-defined op operands is fir cocess zero. The of the operation advantage of co- tion, which mut cotion is the foll yoid *invec,	peration to an op handle that can sub- JCE, MPI_REDUCE_SCATTER, peration is assumed to be associative. both commutative and associative. If xed and is defined to be in ascending, ne order of evaluation can be changed, on. If commute = true then the order ommutativity and associativity. st have the following four arguments: lowing. void *inoutvec, int *len,
		• -	

The Fortran declaration of the user-defined function appears below. SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, TYPE) <type> INVEC(LEN), INOUTVEC(LEN)

INTEGER LEN, TYPE

The C++ declaration of the user-defined function appears below.

The datatype argument is a handle to the data type that was passed into the call to MPI_REDUCE. The user reduce function should be written such that the following holds: Let $u[0], \ldots, u[len-1]$ be the len elements in the communication buffer described by the arguments invec, len and datatype when the function is invoked; let v[0], ..., v[len-1] be len elements in the communication buffer described by the arguments inoutvec, len and datatype when the function is invoked; let $w[0], \ldots, w[len-1]$ be len elements in the communication buffer described by the arguments inoutvec, len and datatype when the function returns; then $w[i] = u[i] \circ v[i]$, for i=0 , ... , len-1, where \circ is the reduce operation that the function computes.

Informally, we can think of invec and inoutvec as arrays of len elements that function is combining. The result of the reduction over-writes values in inoutvec, hence the name. Each invocation of the function results in the pointwise evaluation of the reduce operator on len elements: I.e, the function returns in inoutvec[i] the value invec[i] \circ inoutvec[i], for $i = 0, \ldots, \text{count} - 1$, where \circ is the combining operation computed by the function.

Rationale. The len argument allows MPI_REDUCE to avoid calling the function for each element in the input buffer. Rather, the system can choose to apply the function to chunks of input. In C, it is passed in as a reference for reasons of compatibility with Fortran.

By internally comparing the value of the datatype argument to known, global handles, it is possible to overload the use of a single user-defined function for several, different data types. (*End of rationale.*)

General datatypes may be passed to the user function. However, use of datatypes that are not contiguous is likely to lead to inefficiencies.

No MPI communication function may be called inside the user function. MPI_ABORT may be called inside the function in case of an error.

Advice to users. Suppose one defines a library of user-defined reduce functions that are overloaded: the datatype argument is used to select the right execution path at each invocation, according to the types of the operands. The user-defined reduce function cannot "decode" the datatype argument that it is passed, and cannot identify, by itself, the correspondence between the datatype handles and the datatype they represent. This correspondence was established when the datatypes were created. Before the library is used, a library initialization preamble must be executed. This preamble code will define the datatypes that are used by the library, and store handles to these datatypes in global, static variables that are shared by the user code and the library code.

The Fortran version of MPI_REDUCE will invoke a user-defined reduce function using the Fortran calling conventions and will pass a Fortran-type datatype argument; the C version will use C calling convention and the C representation of a datatype handle. Users who plan to mix languages should define their reduction functions accordingly. (*End of advice to users.*)

Advice to implementors. We outline below a naive and inefficient implementation of MPI_REDUCE not supporting the "in place" option.

```
39
MPI_Comm_size(comm, &groupsize);
MPI_Comm_rank(comm, &rank);
                                                                         40
                                                                         41
if (rank > 0) {
                                                                         42
    MPI_Recv(tempbuf, count, datatype, rank-1,...);
    User_reduce(tempbuf, sendbuf, count, datatype);
                                                                         43
                                                                         44
}
                                                                         45
if (rank < groupsize-1) {</pre>
                                                                         46
    MPI_Send(sendbuf, count, datatype, rank+1, ...);
                                                                         47
}
/* answer now resides in process groupsize-1 \dots now send to root ^{48}
```

1

2

3

4

5

6

 $\overline{7}$

8

9

10 11

12

13

14

15 16

17 18

19

20

21

22

23

24

25

26

27

28

29 30

31

32

33

34

35

36

```
1
                     */
2
                    if (rank == root) {
3
                         MPI_Irecv(recvbuf, count, datatype, groupsize-1,..., &req);
4
                    }
5
                    if (rank == groupsize-1) {
6
                         MPI_Send(sendbuf, count, datatype, root, ...);
7
                    }
8
                    if (rank == root) {
9
                         MPI_Wait(&req, &status);
10
                    }
11
12
           The reduction computation proceeds, sequentially, from process 0 to process
13
           groupsize-1. This order is chosen so as to respect the order of a possibly non-
14
           commutative operator defined by the function User_reduce(). A more efficient im-
15
           plementation is achieved by taking advantage of associativity and using a logarithmic
16
           tree reduction. Commutativity can be used to advantage, for those cases in which
17
           the commute argument to MPI_OP_CREATE is true. Also, the amount of temporary
18
           buffer required can be reduced, and communication can be pipelined with computa-
19
           tion, by transferring and reducing the elements in chunks of size len <count.
20
           The predefined reduce operations can be implemented as a library of user-defined
21
           operations. However, better performance might be achieved if MPI_REDUCE handles
22
           these functions as a special case. (End of advice to implementors.)
23
24
25
26
     MPI_OP_FREE(op)
27
       INOUT
                 op
                                              operation (handle)
28
29
     int MPI_op_free(MPI_Op *op)
30
31
     MPI_OP_FREE(OP, IERROR)
32
          INTEGER OP, IERROR
33
     void MPI::Op::Free()
34
35
          Marks a user-defined reduction operation for deallocation and sets op to MPI_OP_NULL.
36
37
     Example of User-defined Reduce
38
39
     It is time for an example of user-defined reduction. The example in this section uses an
40
     intracommunicator.
41
     Example 5.20 Compute the product of an array of complex numbers, in C.
42
43
     typedef struct {
44
          double real, imag;
45
     } Complex;
46
47
     /* the user-defined function
48
```

```
1
 */
                                                                                        2
void myProd(Complex *in, Complex *inout, int *len, MPI_Datatype *dptr)
                                                                                        3
{
                                                                                        4
    int i;
                                                                                        5
    Complex c;
                                                                                        6
                                                                                        7
    for (i=0; i< *len; ++i) {</pre>
        c.real = inout->real*in->real -
                                                                                        8
                                                                                        9
                     inout->imag*in->imag;
                                                                                        10
        c.imag = inout->real*in->imag +
                                                                                        11
                     inout->imag*in->real;
                                                                                        12
        *inout = c;
                                                                                        13
        in++; inout++;
                                                                                        14
    }
}
                                                                                        15
                                                                                        16
                                                                                        17
/* and, to call it...
                                                                                        18
 */
                                                                                        19
. . .
                                                                                        20
    /* each process has an array of 100 Complexes
                                                                                       21
     */
                                                                                       22
    Complex a[100], answer[100];
                                                                                       23
                                                                                        24
    MPI_Op myOp;
                                                                                        25
    MPI_Datatype ctype;
                                                                                        26
    /* explain to MPI how type Complex is defined
                                                                                        27
     */
                                                                                        28
    MPI_Type_contiguous(2, MPI_DOUBLE, &ctype);
                                                                                        29
                                                                                        30
    MPI_Type_commit(&ctype);
                                                                                        31
    /* create the complex-product user-op
     */
                                                                                        32
                                                                                        33
    MPI_Op_create(myProd, True, &myOp);
                                                                                       34
    MPI_Reduce(a, answer, 100, ctype, myOp, root, comm);
                                                                                       35
                                                                                       36
                                                                                       37
    /* At this point, the answer, which consists of 100 Complexes,
                                                                                        38
     * resides on process root
                                                                                        39
     */
                                                                                        40
                                                                                        41
5.9.6 All-Reduce
                                                                                       42
                                                                                       43
```

MPI includes a variant of the reduce operations where the result is returned to all processes in a group. MPI requires that all processes from the same group participating in these operations receive identical results.

44

45

1 MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm) 2 IN sendbuf starting address of send buffer (choice) 3 OUT recvbuf starting address of receive buffer (choice) 4 5IN number of elements in send buffer (non-negative intecount 6 ger) $\overline{7}$ IN datatype data type of elements of send buffer (handle) 8 IN op operation (handle) 9 10 IN comm communicator (handle) 11 12int MPI_Allreduce(void* sendbuf, void* recvbuf, int count, 13 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm) 14MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR) 15<type> SENDBUF(*), RECVBUF(*) 16 INTEGER COUNT, DATATYPE, OP, COMM, IERROR 17 18 void MPI::Comm::Allreduce(const void* sendbuf, void* recvbuf, int count, 19 const MPI::Datatype& datatype, const MPI::Op& op) const = 0 20If comm is an intracommunicator, MPI_ALLREDUCE behaves the same as 21MPI_REDUCE except that the result appears in the receive buffer of all the group members. 22 23The all-reduce operations can be implemented as a re-Advice to implementors. 24duce, followed by a broadcast. However, a direct implementation can lead to better 25performance. (End of advice to implementors.) 2627 The "in place" option for intracommunicators is specified by passing the value 28 MPI_IN_PLACE to the argument sendbuf at all processes. In this case, the input data is taken 29at each process from the receive buffer, where it will be replaced by the output data. 30 If comm is an intercommunicator, then the result of the reduction of the data provided 31by processes in group A is stored at each process in group B, and vice versa. Both groups 32 should provide **count** and **datatype** arguments that specify the same type signature. 33 The following example uses an intracommunicator. 34 35 **Example 5.21** A routine that computes the product of a vector and an array that are 36 distributed across a group of processes and returns the answer at all nodes (see also Example 37 5.16). 38 39 SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm) 40REAL a(m), b(m,n)! local slice of array 41REAL c(n)! result 42REAL sum(n) 43INTEGER n, comm, i, j, ierr 44 45! local sum 46DO j= 1, n 47sum(j) = 0.048 DO i = 1, m

```
1
    sum(j) = sum(j) + a(i)*b(i,j)
                                                                                            2
  END DO
END DO
! global sum
                                                                                            5
CALL MPI_ALLREDUCE(sum, c, n, MPI_REAL, MPI_SUM, comm, ierr)
                                                                                            6
! return result at all nodes
RETURN
                                                                                            9
                                                                                            10
                                                                                            11
                                                                                            12
5.10
        Reduce-Scatter
                                                                                            13
MPI includes a variant of the reduce operations where the result is scattered to all processes
                                                                                            14
                                                                                            15
in a group on return.
                                                                                            16
                                                                                            17
MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm)
                                                                                            18
                                                                                            19
  IN
           sendbuf
                                        starting address of send buffer (choice)
                                                                                           20
  OUT
            recvbuf
                                        starting address of receive buffer (choice)
                                                                                           21
  IN
            recvcounts
                                        non-negative integer array specifying the number of
                                                                                           22
                                        elements in result distributed to each process. Array
                                                                                           23
                                        must be identical on all calling processes.
                                                                                            24
                                                                                            25
  IN
           datatype
                                        data type of elements of input buffer (handle)
                                                                                            26
  IN
                                        operation (handle)
           ор
                                                                                            27
  IN
                                        communicator (handle)
            comm
                                                                                            28
                                                                                           29
int MPI_Reduce_scatter(void* sendbuf, void* recvbuf, int *recvcounts,
                                                                                           30
               MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)
                                                                                            31
                                                                                            32
MPI_REDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,
                                                                                            33
               IERROR)
                                                                                           34
    <type> SENDBUF(*), RECVBUF(*)
                                                                                           35
    INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR
                                                                                           36
void MPI::Comm::Reduce_scatter(const void* sendbuf, void* recvbuf,
                                                                                           37
               int recvcounts[], const MPI::Datatype& datatype,
                                                                                           38
               const MPI::Op& op) const = 0
                                                                                            39
                                                                                            40
    If comm is an intracommunicator, MPI_REDUCE_SCATTER first does an element-wise
                                                                                           41
```

reduction on vector of count = \sum_{i} recvcounts[i] elements in the send buffer defined by sendbuf, count and datatype. Next, the resulting vector of results is split into n disjoint segments, where n is the number of members in the group. Segment i contains recvcounts[i] elements. The i-th segment is sent to process i and stored in the receive buffer defined by recvbuf, recvcounts[i] and datatype.

Advice to implementors. The MPI_REDUCE_SCATTER routine is functionally equivalent to: an MPI_REDUCE collective operation with count equal to the sum of

42

43

44

45

46 47

	46	C_{2}	HAPTER 5.	COLLECTIVE COMMUNICATION	
1 2 3		recvcounts[i] followed by MPI_SCATTERV with sendcounts equal to recvcounts. How- ever, a direct implementation may run faster. (<i>End of advice to implementors.</i>)			
4 5 6 7 8 9	in the send buffer. If com by processe group, all p	buf argument. In this case, t m is an intercommunicator, the s in group A is scattered amon	the input dat then the resul ng processes i ecvcounts arg	is specified by passing MPI_IN_PLACE to a is taken from the top of the receive t of the reduction of the data provided n group B, and vice versa. Within each ument, and the sum of the recvcounts	
11 12 13 14 15	deter		al recvcounts	at the length of the send buffer can be entries. Otherwise, a communication reduced. (<i>End of rationale.</i>)	
16 17	5.11 Sc	an			
18 19 20	5.11.1 In	clusive Scan			
21 22	MPI_SCAN	l(sendbuf, recvbuf, count, data	type, op, con	ım)	
22	IN	sendbuf	starting add	lress of send buffer (choice)	
24	OUT	recvbuf	starting add	lress of receive buffer (choice)	
25 26 27	IN	count	number of ϵ teger)	elements in input buffer (non-negative in-	
28	IN	datatype	data type of	f elements of input buffer (handle)	
29	IN	ор	operation (h	handle)	
30 31	IN	comm	communicat	tor (handle)	
32 33 34	int MPI_S	can(void* sendbuf, void* MPI_Datatype datatyp			
35 36 37	<type< td=""><td>SENDBUF, RECVBUF, COUNT, > SENDBUF(*), RECVBUF(*) ER COUNT, DATATYPE, OP,</td><td></td><td></td></type<>	SENDBUF, RECVBUF, COUNT, > SENDBUF(*), RECVBUF(*) ER COUNT, DATATYPE, OP,			
38 39 40	void MPI::Intracomm::Scan(const void* sendbuf, void* recvbuf, int count, const MPI::Datatype& datatype, const MPI::Op& op) const				
41 42 43 44 45 46 47 48	on data dia process with 0,,i (in on send an The "in the sendbu	stributed across the group. ' th rank i, the reduction of th nclusive). The type of operati d receive buffers are as for M n place" option for intracom	The operatio e values in th ions supporte PI_REDUCE nunicators is	is used to perform a prefix reduction n returns, in the receive buffer of the ne send buffers of processes with ranks ed, their semantics, and the constraints specified by passing MPI_IN_PLACE in is taken from the receive buffer, and	

Th	is operation is invalid	for intercommunicators.	1		
5112	Exclusive Scan		2 3		
J.11.2					
			5		
MPI_E	KSCAN(sendbuf, recvbu	ıf, count, datatype, op, comm)	6		
IN	sendbuf	starting address of send buffer (choice)	7 8		
OUT	recvbuf	starting address of receive buffer (choice)	9		
IN	count	number of elements in input buffer (non-negative in- teger)	10 11		
IN	datatype	data type of elements of input buffer (handle)	12		
IN	ор	operation (handle)	13 14		
IN	comm	intracommunicator (handle)	15		
			16		
int MP	I_Exscan(void *send	lbuf, void *recvbuf, int count,	17		
	MPI_Datatype	e datatype, MPI_Op op, MPI_Comm comm)	18 19		
MPI_EX	SCAN(SENDBUF, RECVE	BUF, COUNT, DATATYPE, OP, COMM, IERROR)	20		
	ype> SENDBUF(*), RE		21		
IN	TEGER COUNT, DATATY	YPE, OP, COMM, IERROR	22		
<pre>void MPI::Intracomm::Exscan(const void* sendbuf, void* recvbuf, int count,</pre>					
<pre>const MPI::Datatype& datatype, const MPI::Op& op) const</pre>					
If	If $comm$ is an intracommunicator, MPI_EXSCAN is used to perform a prefix reduction				
		e group. The value in recvbuf on the process with rank 0 is	27		
		significant on process 0. The value in recvbuf on the process value in sendbuf on the process with rank 0. For processes	28		
		returns, in the receive buffer of the process with rank i , the	29 30		
		e send buffers of processes with ranks $0, \ldots, i-1$ (inclusive).	31		
		rted, their semantics, and the constraints on send and receive	32		
· · · · · · · · · · · · · · · · · · ·	are as for MPI_REDU		33		
	"in place" option is su is operation is invalid	for intercommunicators.	34 35		
	-	r MPI_SCAN, MPI does not specify which processes may call	36		
		t the result be correctly computed. In particular, note that	37		
	× , ,	need not call the MPI_Op, since all it needs to do is to receive	38		
	•	cess with rank 0. However, all processes, even the processes	39 40		
W	ith ranks zero and one	e, must provide the same op. (End of advice to users.)	40		
R	ationale. The exclusiv	ve scan is more general than the inclusive scan. Any inclusive	42		
		chieved by using the exclusive scan and then locally combining	43		
		Note that for non-invertable operations such as MPI_MAX, the	44		
		e computed with the inclusive scan.	45 46		
		specified for MPI_EXSCAN because it is not clear what this ith rank zero. (<i>End of rationale.</i>)	47 48		

1 5.11.3 Example using MPI_SCAN $\mathbf{2}$ The example in this section uses an intracommunicator. 3 4 **Example 5.22** This example uses a user-defined operation to produce a segmented scan. 5A segmented scan takes, as input, a set of values and a set of logicals, and the logicals 6 delineate the various segments of the scan. For example: 7 values v_1 $v_2 \quad v_3$ v_4 v_6 v_8 v_7 8 0 1 9 *result* v_1 $v_1 + v_2$ v_3 $v_3 + v_4$ $v_3 + v_4 + v_5$ v_6 $v_6 + v_7$ v_8 10 11 The operator that produces this effect is, 12 $\left(\begin{array}{c} u\\i\end{array}\right)\circ\left(\begin{array}{c} v\\j\end{array}\right)=\left(\begin{array}{c} w\\j\end{array}\right),$ 13 1415where, 16 17 $w = \begin{cases} u+v & \text{if } i=j \\ v & \text{if } i\neq j \end{cases}.$ 18 19 Note that this is a non-commutative operator. C code that implements it is given 20below. 2122 typedef struct { 23double val; 24int log; 25} SegScanPair; 2627/* the user-defined function 28*/ 29 void segScan(SegScanPair *in, SegScanPair *inout, int *len, 30 MPI_Datatype *dptr) 31{ 32 int i; 33 SegScanPair c; 34 35 for (i=0; i< *len; ++i) {</pre> 36 if (in->log == inout->log) 37 c.val = in->val + inout->val; 38 else 39 c.val = inout->val; 40 c.log = inout->log; 41 *inout = c; 42in++; inout++; 43 } 44 } 4546 Note that the inout argument to the user-defined function corresponds to the right-

⁴⁰ Note that the mout argument to the user-defined function corresponds to the right-⁴⁷ hand operand of the operator. When using this operator, we must be careful to specify that ⁴⁸ it is non-commutative, as in the following.

```
int i, base;
SeqScanPair a, answer;
MPI_Op
             myOp;
MPI_Datatype type[2] = {MPI_DOUBLE, MPI_INT};
MPI_Aint
             disp[2];
             blocklen[2] = { 1, 1};
int
MPI_Datatype sspair;
/* explain to MPI how type SegScanPair is defined
 */
MPI_Address(a, disp);
MPI_Address(a.log, disp+1);
base = disp[0];
for (i=0; i<2; ++i) disp[i] -= base;</pre>
MPI_Type_struct(2, blocklen, disp, type, &sspair);
MPI_Type_commit(&sspair);
/* create the segmented-scan user-op
 */
MPI_Op_create(segScan, 0, &myOp);
. . .
MPI_Scan(a, answer, 1, sspair, myOp, comm);
```

5.12 Nonblocking Collective Operations

As described in Section ?? (Section 3.7), performance of many applications can be improved by overlapping communication and computation, and many systems enable this. Nonblocking collective operations combine the potential benefits of nonblocking point-to-point operations, to exploit overlap and to avoid synchronization, with the optimized implementation and message scheduling provided by collective operations [1, 4]. One way of doing this would be to perform a blocking collective operation in a separate thread. An alternative mechanism that often leads to better performance (e.g., avoids context switching, scheduler overheads, and thread management) is to use nonblocking collective communication [2].

The nonblocking collective communication model is similar to the model used for nonblocking point-to-point communication. A nonblocking call initiates a collective operation, which must be completed in a separate completion call. Once initiated, the operation may progress independently of any computation or other communication at participating processes. In this manner, nonblocking collective operations can mitigate possible synchronizing effects of collective operations by running them in the "background." In addition to enabling communication-computation overlap, nonblocking collective operations can perform collective operations. Their semantic advantages can also be useful in combination with point-to-point communication.

As in the nonblocking point-to-point case, all calls are local and return immediately, irrespective of the status of other processes. The call initiates the operation, which indicates that the system may start to copy data out of the send buffer and into the receive buffer. Once initiated, all associated send buffers should not be modified and all associated receive

1

2

3

4

5

6

7

8

9 10

11

12

13 14

15

16

17

18

19 20

25 26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

¹ buffers should not be accessed until the collective operation completes. The call returns a
 ² request handle, which must be passed to a completion call.

3 All completion calls (e.g., MPI_WAIT) described in Section ?? (Section 3.7.3) are sup-4 ported for nonblocking collective operations. Similarly to the blocking case, nonblocking 5collective operations are considered to be complete when the local part of the operation is 6 finished, i.e., for the caller, the semantics of the operation are guaranteed and all buffers 7can be safely accessed and modified. Completion does not indicate that other processes 8 have completed or even started the operation (unless otherwise implied by the description 9 of the operation). Completion of a particular nonblocking collective operation also does not 10 indicate completion of any other posted nonblocking collective (or send-receive) operations, 11 whether they are posted before or after the completed operation.

12 13

14

15

25

26

27

28

Advice to users. Users should be aware that implementations are allowed, but not required (with exception of MPI_BARRIER), to synchronize processes during the completion of a nonblocking collective operation. (*End of advice to users.*)

¹⁶ Upon returning from a completion call in which a nonblocking collective operation ¹⁷ completes, the MPI_ERROR field in the associated status object is set appropriately. The ¹⁸ values of the MPI_SOURCE and MPI_TAG fields are undefined. It is valid to mix different ¹⁹ request types (i.e., any combination of collective requests, I/O requests, generalized requests, ²⁰ or point-to-point requests) in functions that enable multiple completions (e.g.,

MPI_WAITALL). It is erroneous to call MPI_REQUEST_FREE or MPI_CANCEL for a request
 associated with a nonblocking collective operation. Nonblocking collective requests are not
 persistent.

Rationale. Freeing an active nonblocking collective request could cause similar problems as discussed for point-to-point requests (see Section ?? (3.7.3)). Cancelling a request is not supported because the semantics of this operation are not well-defined. (End of rationale.)

²⁹ Multiple nonblocking collective operations can be outstanding on a single communi-³⁰ cator. If the nonblocking call causes some system resource to be exhausted, then it will ³¹ fail and generate an MPI exception. Quality implementations of MPI should ensure that ³² this happens only in pathological cases. That is, an MPI implementation should be able to ³³ support a large number of pending nonblocking operations.

³⁴ Unlike point-to-point operations, nonblocking collective operations do not match with ³⁵ blocking collective operations, and collective operations do not have a tag argument. All ³⁶ processes must call collective operations (blocking and nonblocking) in the same order ³⁷ per communicator. In particular, once a process calls a collective operation, all other ³⁸ processes in the communicator must eventually call the same collective operation, and no ³⁹ other collective operation with the same communicator in between. This is consistent with ⁴⁰ the ordering rules for blocking collective operations in threaded environments.

Rationale. Matching blocking and nonblocking collective operations is not allowed
 because the implementation might use different communication algorithms for the two
 cases. Blocking collective operations may be optimized for minimal time to comple tion, while nonblocking collective operations may balance time to completion with
 CPU overhead and asynchronous progression.

The use of tags for collective operations can prevent certain hardware optimizations.
 (*End of rationale.*)

Advice to users. If program semantics require matching blocking and nonblocking collective operations, then a nonblocking collective operation can be initiated and immediately completed with a blocking wait to emulate blocking behavior. (*End of advice to users.*)

In terms of data movements, each nonblocking collective operation has the same effect as its blocking counterpart for intracommunicators and intercommunicators after completion. Likewise, upon completion, nonblocking collective reduction operations have the same effect as their blocking counterparts, and the same restrictions and recommendations on reduction orders apply.

The use of the "in place" option is allowed exactly as described for the corresponding blocking collective operations. When using the "in place" option, message buffers function as both send and receive buffers. Such buffers should not be modified or accessed until the operation completes.

Progression rules for nonblocking collective operations are similar to progression of nonblocking point-to-point operations, refer to Section ?? (Section 3.7.4).

Advice to implementors. Nonblocking collective operations can be implemented with local execution schedules [3] using nonblocking point-to-point communication and a reserved tag-space. (*End of advice to implementors.*)

5.12.1 Nonblocking Barrier Synchronization

```
MPI_IBARRIER(comm , request)
```

IN		comm	communicator (handle	e)
οι	JT	request	communication reques	st (handle)
int	MPI_Ib	arrier(MPI_Comm comm,	MPI_Request *request	t)

MPI_IBARRIER(COMM, REQUEST, IERROR) INTEGER COMM, REQUEST, IERROR

```
MPI::Request MPI::Comm::Ibarrier() const = 0
```

MPI_IBARRIER is a nonblocking version of MPI_BARRIER. By calling MPI_IBARRIER, a process notifies that it has reached the barrier. The call returns immediately, independent of whether other processes have called MPI_IBARRIER. The usual barrier semantics are enforced at the corresponding completion operation (test or wait), which in the intracommunicator case will complete only after all other processes in the communicator have called MPI_IBARRIER. In the intercommunicator case, it will complete when all processes in the remote group have called MPI_IBARRIER.

Advice to users. A nonblocking barrier can be used to hide latency. Moving independent computations between the MPI_IBARRIER and the subsequent completion call can overlap the barrier latency and therefore shorten possible waiting times. The semantic properties are also useful when mixing collective operations and point-to-point messages. (*End of advice to users.*)

```
1
     5.12.2
              Nonblocking Broadcast
\mathbf{2}
3
4
     MPI_IBCAST(buffer, count, datatype, root, comm, request)
5
       INOUT
                  buffer
                                              starting address of buffer (choice)
6
7
       IN
                                              number of entries in buffer (non-negative integer)
                  count
8
       IN
                                              data type of buffer (handle)
                  datatype
9
       IN
                                              rank of broadcast root (integer)
                  root
10
11
       IN
                  comm
                                              communicator (handle)
12
       OUT
                                              communication request (handle)
                 request
13
14
     int MPI_Ibcast(void* buffer, int count, MPI_Datatype datatype, int root,
15
                     MPI_Comm comm, MPI_Request *request)
16
17
     MPI_IBCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR)
18
          <type> BUFFER(*)
19
          INTEGER COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR
20
     MPI::Request MPI::Comm::Ibcast(void* buffer, int count,
21
                     const MPI::Datatype& datatype, int root) const = 0
22
23
          This call starts a nonblocking variant of MPI_BCAST. The data movement after
24
     MPI_IBCAST completes is identical to the data movement after MPI_BCAST completes (see
25
     Section 5.4).
26
27
     Example using MPI_IBCAST
28
     The example in this section uses intracommunicators.
29
30
     Example 5.23 Start a broadcast of 100 ints from process 0 to every process in the group,
31
     perform some computation on independent data, and then complete the outstanding broad-
32
     cast operation.
33
34
          MPI_Comm comm;
35
          int array1[100], array2[100];
36
          int root=0;
37
          MPI_Request req;
38
          . . .
39
          MPI_Ibcast(array1, 100, MPI_INT, root, comm, &req);
40
          compute(array2, 100);
41
          MPI_Wait(&req, MPI_STATUS_IGNORE);
42
43
44
45
46
47
48
```

CHAPTER 5. COLLECTIVE COMMUNICATION

5.12.3 Nonblocking Gather

5.12.3	Nonblocking Gather		1
	C C		2
			3
MPI_IG	ATHER(sendbuf, sendcour	nt, sendtype, recvbuf, recvcount, recvtype, root, comm, re-	4
quest)			5 6
IN	sendbuf	starting address of send buffer (choice)	7
IN	sendcount	number of elements in send buffer (non-negative inte-	8
		ger)	9
IN	sendtype	data type of send buffer elements (handle)	10
OUT	recvbuf	address of receive buffer (choice, significant only at root)	11 12 13
IN	recvcount	number of elements for any single receive (non-negative integer, significant only at root)	14 15
IN	recvtype	data type of recv buffer elements (significant only at root) (handle)	16 17
IN	root	rank of receiving process (integer)	18 19
IN	comm	communicator (handle)	20
OUT	request	communication request (handle)	21
			22
int MP	I_Igather(void* sendb	uf, int sendcount, MPI_Datatype sendtype,	23
	•	int recvcount, MPI_Datatype recvtype, int root,	24 25
	MPI_Comm comm,	MPI_Request *request)	25 26
MPI IG	ATHER (SENDBUF, SENDCO	UNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,	27
	ROOT, COMM, RE		28
<t< td=""><td>ype> SENDBUF(*), RECV</td><td></td><td>29</td></t<>	ype> SENDBUF(*), RECV		29
IN	TEGER SENDCOUNT, SEND	TYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST,	30
IE	RROR		31
MPT::R	equest MPT::Comm::Iga	ther(const void* sendbuf, int sendcount, const	32
		sendtype, void* recvbuf, int recvcount,	33
	• -	atype& recvtype, int root) const = 0	34 35
ጥካ		ing variant of MPI_GATHER. The data movement after	36
		tical to the data movement after MPI_GATHER completes	37
	etion 5.5).		38
,			39

53

1

1 2	MPI_IGATH comm, requ		ndtype, recvbuf, recvcounts, displs, recvtype, root,
3	IN	sendbuf	starting address of send buffer (choice)
4 5 6	IN	sendcount	number of elements in send buffer (non-negative inte- ger)
7	IN	sendtype	data type of send buffer elements (handle)
8 9 10	OUT	recvbuf	address of receive buffer (choice, significant only at root)
10 11 12 13	IN	recvcounts	non-negative integer array (of length group size) con- taining the number of elements that are received from each process (significant only at root)
14 15 16 17	IN	displs	integer array (of length group size). Entry i specifies the displacement relative to recvbuf at which to place the incoming data from process i (significant only at root)
18 19 20	IN	recvtype	data type of recv buffer elements (significant only at root) (handle)
21	IN	root	rank of receiving process (integer)
22	IN	comm	communicator (handle)
23 24	OUT	request	communication request (handle)
25 26 27 28 29	int MPI_I;	void* recvbuf, int *	nt sendcount, MPI_Datatype sendtype, recvcounts, int *displs, e, int root, MPI_Comm comm,)
30 31 32 33 34	<type INTEG</type 	RECVTYPE, ROOT, COMM > SENDBUF(*), RECVBUF(*)	SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS, , REQUEST, IERROR) RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,
35 36 37 38 39	MPI::Requ	MPI::Datatype& sendt const int recvcounts	<pre>const void* sendbuf, int sendcount, const ype, void* recvbuf, [], const int displs[], recvtype, int root) const = 0</pre>
40 41 42 43 44 45	MPI_IGATH	0	ant of MPI_GATHERV. The data movement after to the data movement after MPI_GATHERV com-
46 47 48			

5.12.4 Nonblocking Scatter

MPI_ISCATTER(sendbuf, sendcount,	sendtype,	recvbuf,	recvcount,	recvtype,	root,	comm,	re-
quest)							

	,			6
I	N	sendbuf	address of send buffer (choice, significant only at root) $\hfill \hfill \hfil$	7
I	N	sendcount	number of elements sent to each process (non-negative	8
			integer, significant only at root)	9
I	N	sendtype	data type of send buffer elements (significant only at	10
			root) (handle)	11 12
(DUT	recvbuf	address of receive buffer (choice)	12
I	N	recvcount	number of elements in receive buffer (non-negative in-	14
			teger)	15
I	N	recvtype	data type of receive buffer elements (handle)	16
			·-	17
I	N	root	rank of sending process (integer)	18
I	N	comm	communicator (handle)	19
(TUC	request	communication request (handle)	20
				21
int	t MPI_Is	<pre>catter(void* sendbuf, in</pre>	t sendcount, MPI_Datatype sendtype,	22 23
		void* recvbuf, int re	ecvcount, MPI_Datatype recvtype, int root,	23 24
		MPI_Comm comm, MPI_Re	equest *request)	24
MP	T TSCATT	ER (SENDBUE, SENDCOUNT, S	ENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,	26
		ROOT, COMM, REQUEST,		27
	<type></type>	<pre>SENDBUF(*), RECVBUF(*)</pre>		28
	INTEGE	R SENDCOUNT, SENDTYPE, R	ECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST,	29
	IERROR			30
мр	T··Beque	st MDICommIscattor(c	onst void* sendbuf, int sendcount, const	31
1.11.	rredne		pe, void* recvbuf, int recvcount,	32
		01 0	recvtype, int root) const = 0	33
				34

This call starts a nonblocking variant of MPI_SCATTER. The data movement after MPI_ISCATTER completes is identical to the data movement after MPI_SCATTER completes (see Section 5.6).

MPI_ISCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root, comm, request)

IN sendbuf address of send buffer (choice, significant only at root)

 $\frac{34}{35}$

1 IN sendcounts non-negative integer array (of length group size) speci- $\mathbf{2}$ fying the number of elements to send to each processor 3 4 IN displs integer array (of length group size). Entry i specifies 5the displacement (relative to sendbuf) from which to 6 take the outgoing data to process i 7 IN sendtype data type of send buffer elements (handle) 8 9 OUT recvbuf address of receive buffer (choice) 10 IN recvcount number of elements in receive buffer (non-negative in-11 teger) 12IN data type of receive buffer elements (handle) recvtype 13 14IN rank of sending process (integer) root 15IN comm communicator (handle) 16 OUT communication request (handle) request 17 18 int MPI_Iscatterv(void* sendbuf, int *sendcounts, int *displs, 19 MPI_Datatype sendtype, void* recvbuf, int recvcount, 2021MPI_Datatype recvtype, int root, MPI_Comm comm, MPI_Request *request) 22 23 MPI_ISCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT, 24RECVTYPE, ROOT, COMM, REQUEST, IERROR) 25<type> SENDBUF(*), RECVBUF(*) 26INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, 27COMM, REQUEST, IERROR 28MPI::Request MPI::Comm::Iscatterv(const void* sendbuf, 2930 const int sendcounts[], const int displs[], 31const MPI::Datatype& sendtype, void* recvbuf, int recvcount, const MPI::Datatype& recvtype, int root) const = 0 32 33 This call starts a nonblocking variant of MPI_SCATTERV. The data movement af-34 ter MPI_ISCATTERV completes is identical to the data movement after MPI_SCATTERV 35 completes (see Section 5.6). 36 37 38 39 40 41 4243 44 4546 4748

CHAPTER 5. COLLECTIVE COMMUNICATION

5.12.5 Nonblocking Gather-to-all

OUT

recvbuf

	0		2
			3
MPI_IALL quest)	GATHER(sendbuf, sendcoun	t, sendtype, recvbuf, recvcount, recvtype, comm, re-	4 5
IN	sendbuf	starting address of send buffer (choice)	6 7
IN	sendcount	number of elements in send buffer (non-negative inte- ger)	8 9
IN	sendtype	data type of send buffer elements (handle)	10
OUT	recvbuf	address of receive buffer (choice)	11 12
IN	recvcount	number of elements received from any process (non-negative integer)	13 14
IN	recvtype	data type of receive buffer elements (handle)	15
IN	comm	communicator (handle)	16 17
OUT	request	communication request (handle)	18
			19
int MPI_	•	f, int sendcount, MPI_Datatype sendtype,	20 21
	void* recvbuf, int MPI_Comm comm, MPI	recvcount, MPI_Datatype recvtype,	21
			23
MPI_IALL(NT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,	24
<tvn< td=""><td>COMM, REQUEST, IER > SENDBUF(*), RECVBUF(</td><td></td><td>25</td></tvn<>	COMM, REQUEST, IER > SENDBUF(*), RECVBUF(25
• 1		, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR	26 27
MPT··Rea	uest MPI··Comm··Tallgat	her(const void* sendbuf, int sendcount,	28
111 1	-	<pre>we& sendtype, void* recvbuf, int recvcount,</pre>	29
		pe& recvtype) const = 0	30
Thia	eall starts a nonblocking wa	riant of MPI_ALLGATHER. The data movement after	31
	0	tical to the data movement after MPI_ALLGATHER	32 33
	(see Section 5.7).		34
			35
	CATHERV/(sendbuf sendcou	nt, sendtype, recvbuf, recvcounts, displs, recvtype, comm,	36
request)		in, senatype, recybur, recycounts, dispis, recytype, comm,	37
IN ,	sendbuf	starting address of send buffer (choice)	38
		- · · · · ·	39 40
IN	sendcount	number of elements in send buffer (non-negative integer)	41
IN	sendtype	data type of send buffer elements (handle)	42
		sale of poor solid sale control (number)	43

address of receive buffer (choice)

1 2 3	IN	recvcounts	non-negative integer array (of length group size) con- taining the number of elements that are received from each process		
4 5 6 7	IN	displs	integer array (of length group size). Entry i specifies the displacement (relative to recvbuf) at which to place the incoming data from process i		
8	IN	recvtype	data type of receive buffer elements (handle)		
9	IN	comm	communicator (handle)		
10 11	OUT	request	communication request (handle)		
12 13 14 15	int MPI_	void* recvbuf,	ndbuf, int sendcount, MPI_Datatype sendtype, int *recvcounts, int *displs, ecvtype, MPI_Comm comm, MPI_Request)		
16 17 18 19 20	 RECVTYPE, COMM, REQUEST, IERROR) <pre></pre>				
21 22 23 24 25	MPI::Rec	<pre>MPI::Request MPI::Comm::Iallgatherv(const void* sendbuf, int sendcount,</pre>			
26 27 28 29 30 31 32 33	This call starts a nonblocking variant of MPI_ALLGATHERV. The data movement after MPI_IALLGATHERV completes is identical to the data movement after MPI_ALLGATHERV completes (see Section 5.7).				
34					
35 36					
37					
38					
39 40					
40 41					
42					
43					
44					
45 46					
46 47					
48					

5.12.6 Nonblocking All-to-All Scatter/Gather

OUT

	0	,	2
			3
MPI_IAL	LTOALL(sendbuf, sendc	ount, sendtype, recvbuf, recvcount, recvtype, comm, request)	4 5
			6
IN	sendbuf	starting address of send buffer (choice)	7
IN	sendcount	number of elements sent to each process (non-negative integer)	8 9
IN	sendtype	data type of send buffer elements (handle)	10
OUT	recvbuf	address of receive buffer (choice)	11 12
IN	recvcount	number of elements received from any process (non-	$13 \\ 14$
IN	recvtype	data type of receive buffer elements (handle)	15
IN	comm	communicator (handlo)	16 17
OUT	request		18
			19
int MPI	void* recvbuf	, int recvcount, MPI_Datatype recvtype, , MPI_Request *request)	20 21 22 23
<ty]< td=""><td>COMM, REQUEST pe> SENDBUF(*), RECV</td><td>DCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, , IERROR) /BUF(*)</td><td>24 25 26 27</td></ty]<>	COMM, REQUEST pe> SENDBUF(*), RECV	DCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE, , IERROR) /BUF(*)	24 25 26 27
	quest MPI::Comm::Ial MPI::Datatype	<pre>lltoall(const void* sendbuf, int sendcount, const & sendtype, void* recvbuf, int recvcount, tatype& recvtype) const = 0</pre>	28 29 30
		ing variant of $MPI_ALLTOALL.$ The data movement after	31 32
	LIOALL completes is idee Section 5.8).		33
pieces (se	e Section 5.8).		34 35
			36
	•	Icounts, sdispls, sendtype, recvbuf, recvcounts, rdispls, recv-	37
type, con	nm, request)		38
IN	sendbuf	starting address of send buffer (choice)	39
IN	sendcounts	fying the number of elements to send to each processor	40 41
IN	sdispls	integer array (of length group size). Entry j specifies the displacement (relative to sendbuf) from which to take the outgoing data destined for process j	42 43 44 45
IN	sendtype		45 46

1 2 3	IN	recvcounts	non-negative integer array (of length group size) spec- ifying the number of elements that can be received from each processor		
4 5 6 7	IN	rdispls	integer array (of length group size). Entry i specifies the displacement (relative to recvbuf) at which to place the incoming data from process i		
8	IN	recvtype	data type of receive buffer elements (handle)		
9	IN	comm	communicator (handle)		
10 11	OUT	request	communication request (handle)		
12 13 14 15 16	<pre>int MPI_Ialltoallv(void* sendbuf, int *sendcounts, int *sdispls, MPI_Datatype sendtype, void* recvbuf, int *recvcounts, int *rdispls, MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)</pre>				
17 18 19 20 21 22	<pre>MPI_IALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,</pre>				
23 24 25 26 27	<pre>MPI::Request MPI::Comm::Ialltoallv(const void* sendbuf,</pre>				
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	This call starts a nonblocking variant of MPI_ALLTOALLV. The data movement after MPI_IALLTOALLV completes is identical to the data movement after MPI_ALLTOALLV completes (see Section 5.8).				
44 45 46 47 48					

1 MPI_IALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls, recv-2 types, comm, request) 3 IN sendbuf starting address of send buffer (choice) 4 IN sendcounts integer array (of length group size) specifying the num-5ber of elements to send to each processor (array of 6 non-negative integers) 7 8 IN sdispls integer array (of length group size). Entry j specifies 9 the displacement in bytes (relative to sendbuf) from 10 which to take the outgoing data destined for process 11 j (array of integers) 12 IN sendtypes array of datatypes (of length group size). Entry j 13 specifies the type of data to send to process j (array 14of handles) 15OUT recvbuf address of receive buffer (choice) 1617 IN recvcounts integer array (of length group size) specifying the num-18 ber of elements that can be received from each processor (array of non-negative integers) 19 20IN integer array (of length group size). Entry i specifies rdispls 21the displacement in bytes (relative to recvbuf) at which 22 to place the incoming data from process i (array of 23integers) 24 IN array of datatypes (of length group size). Entry i recvtypes 25specifies the type of data received from process i (ar-26ray of handles) 27IN communicator (handle) comm 2829 OUT communication request (handle) request 30 31 int MPI_Ialltoallw(void *sendbuf, int sendcounts[], int sdispls[], 32 MPI_Datatype sendtypes[], void *recvbuf, int recvcounts[], 33 int rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm, 34MPI_Request *request) 35 MPI_IALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, 36 RECVCOUNTS, RDISPLS, RECVTYPES, COMM, REQUEST, IERROR) 37 <type> SENDBUF(*), RECVBUF(*) 38 INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*), 39 RDISPLS(*), RECVTYPES(*), COMM, REQUEST, IERROR 40 41 MPI::Request MPI::Comm::Ialltoallw(const void* sendbuf, const int 42sendcounts[], const int sdispls[], const MPI::Datatype 43 sendtypes[], void* recvbuf, const int recvcounts[], const int 44 rdispls[], const MPI::Datatype recvtypes[]) const = 0 4546

This call starts a nonblocking variant of MPI_ALLTOALLW. The data movement after MPI_IALLTOALLW completes is identical to the data movement after MPI_ALLTOALLW ⁴⁶ completes (see Section 5.8). ⁴⁸

```
1
     5.12.7
              Nonblocking Reduce
2
3
4
      MPI_IREDUCE(sendbuf, recvbuf, count, datatype, op, root, comm, request)
5
       IN
                  sendbuf
                                               address of send buffer (choice)
6
       OUT
7
                  recvbuf
                                               address of receive buffer (choice, significant only at
8
                                               root)
9
       IN
                  count
                                               number of elements in send buffer (non-negative inte-
10
                                               ger)
11
                  datatype
                                               data type of elements of send buffer (handle)
       IN
12
       IN
13
                                               reduce operation (handle)
                  op
14
       IN
                  root
                                               rank of root process (integer)
15
       IN
                  comm
                                               communicator (handle)
16
17
       OUT
                  request
                                               communication request (handle)
18
19
      int MPI_Ireduce(void* sendbuf, void* recvbuf, int count,
20
                     MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm,
21
                     MPI_Request *request)
22
     MPI_IREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, REQUEST,
23
                     IERROR)
24
          <type> SENDBUF(*), RECVBUF(*)
25
          INTEGER COUNT, DATATYPE, OP, ROOT, COMM, REQUEST, IERROR
26
27
     MPI:::Request MPI::Comm::Ireduce(const void* sendbuf, void* recvbuf,
28
                     int count, const MPI::Datatype& datatype, const MPI::Op& op,
29
                     int root) const = 0
30
          This call starts a nonblocking variant of MPI_REDUCE. MPI_IREDUCE performs the
31
      same reduction operation as MPI_REDUCE (see Section 5.9.1).
32
33
                                      The implementation is explicitly allowed to use different
           Advice to implementors.
34
           algorithms for blocking and nonblocking reduction operations that might change the
35
           order of evaluation of the operations. However, as for MPI_REDUCE, it is strongly
36
           recommended that MPI_IREDUCE be implemented so that the same result be obtained
37
           whenever the function is applied on the same arguments, appearing in the same order.
38
           Note that this may prevent optimizations that take advantage of the physical location
39
           of processes. (End of advice to implementors.)
40
41
           Advice to users. For operations which are not truly associative, the result delivered
42
           upon completion of the nonblocking reduction may not exactly equal the result deliv-
43
           ered by the blocking reduction, even when specifying the same arguments in the same
44
           order. (End of advice to users.)
45
46
47
48
```

CHAPTER 5. COLLECTIVE COMMUNICATION

5.12.8 Nonblocking All-Reduce

MPI includes a variant of the reduce operations where the result is returned to all processes in a group. MPI requires that all processes from the same group participating in these operations receive identical results.

MPI_IALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm, request)			7
IN	sendbuf	starting address of send buffer (choice)	8 9
OUT	recvbuf	starting address of receive buffer (choice)	10
IN	count	number of elements in send buffer (non-negative integer)	11 12
IN	datatype	data type of elements of send buffer (handle)	13 14
IN	ор	operation (handle)	15
IN	comm	communicator (handle)	16
OUT	request	communication request (handle)	17 18
			19
int MPI_I	allreduce(void* sendbuf,	<pre>void* recvbuf, int count,</pre>	20
	MPI_Datatype datatype	e, MPI_Op op, MPI_Comm comm,	21
	MPI_Request *request)	22
	EDUCE (SENDRUE DECURIE (23
MPI_IALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR)			24
<pre>type> SENDBUF(*), RECVBUF(*)</pre>			25
INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR			26
INTEGER COONT, DRIRITE, OF, COMP, REQUEST, TERROR			27
<pre>MPI::Request MPI::Comm::Iallreduce(const void* sendbuf, void* recvbuf,</pre>			28
<pre>int count, const MPI::Datatype& datatype, const MPI::Op& op)</pre>			29
	const = 0		

This call starts a nonblocking variant of MPI_ALLREDUCE. MPI_IALLREDUCE performs the same reduction operation as MPI_ALLREDUCE (see Section 5.9.6).

5.12.9 Nonblocking Reduce-Scatter

MPI_IREDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm, request)				
IN	sendbuf	starting address of send buffer (choice)		
OUT	recvbuf	starting address of receive buffer (choice)		

1 IN recvcounts non-negative integer array specifying the number of $\mathbf{2}$ elements in result distributed to each process. Array 3 must be identical on all calling processes. 4 IN datatype data type of elements of input buffer (handle) 5IN ор operation (handle) 6 7 IN communicator (handle) comm 8 OUT request communication request (handle) 9 10 int MPI_Ireduce_scatter(void* sendbuf, void* recvbuf, int *recvcounts, 11MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, 12MPI_Request *request) 13 14MPI_IREDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM, 15REQUEST, IERROR) 16 <type> SENDBUF(*), RECVBUF(*) 17 INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, REQUEST, IERROR 18 MPI::Request MPI::Comm::Ireduce_scatter(const void* sendbuf, void* recvbuf, 19 int recvcounts[], const MPI::Datatype& datatype, 20const MPI::Op& op) const = 0 2122 This call starts a nonblocking variant of MPI_REDUCE_SCATTER. 23MPI_IREDUCE_SCATTER performs the same reduction operation as 24MPI_REDUCE_SCATTER (see Section 5.10). 25265.12.10 Nonblocking Inclusive Scan 272829MPI_ISCAN(sendbuf, recvbuf, count, datatype, op, comm, request) 30 IN sendbuf starting address of send buffer (choice) 3132 OUT recvbuf starting address of receive buffer (choice) 33 IN number of elements in input buffer (non-negative incount 34 teger) 35 IN datatype data type of elements of input buffer (handle) 36 37 IN operation (handle) ор 38 IN comm communicator (handle) 39 OUT request communication request (handle) 40 41 int MPI_Iscan(void* sendbuf, void* recvbuf, int count, 42 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, 43 MPI_Request *request) 44 45MPI_ISCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR) 46 <type> SENDBUF(*), RECVBUF(*) 47INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR 48

CHAPTER 5. COLLECTIVE COMMUNICATION

1 MPI::Request MPI::Intracomm::Iscan(const void* sendbuf, void* recvbuf, 2 int count, const MPI::Datatype& datatype, const MPI::Op& op) 3 const 4 This call starts a nonblocking variant of MPI_SCAN. MPI_ISCAN performs the same 5 reduction operation as MPI_SCAN (see Section 5.11). 6 7 5.12.11 Nonblocking Exclusive Scan 8 9 10 MPI_IEXSCAN(sendbuf, recvbuf, count, datatype, op, comm, request) 11 12IN sendbuf starting address of send buffer (choice) 13 OUT recvbuf starting address of receive buffer (choice) 14number of elements in input buffer (non-negative in-IN count 15teger) 1617IN datatype data type of elements of input buffer (handle) 18 IN operation (handle) ор 19 IN intracommunicator (handle) comm 2021OUT communication request (handle) request 22 23int MPI_Iexscan(void *sendbuf, void *recvbuf, int count, 24MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, 25MPI_Request *request) 26MPI_IEXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR) 27 <type> SENDBUF(*), RECVBUF(*) 28INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR 29 30 MPI::Request MPI::Intracomm::Iexscan(const void* sendbuf, void* recvbuf, 31 int count, const MPI::Datatype& datatype, const MPI::Op& op) 32 const 33 This call starts a nonblocking variant of MPI_EXSCAN. MPI_IEXSCAN performs the 34same reduction operation as MPI_EXSCAN (see Section 5.11.2). 35 36

5.13 Correctness

A correct, portable program must invoke collective communications so that deadlock will not occur, whether collective communications are synchronizing or not. The following examples illustrate dangerous use of collective routines on intracommunicators.

Example 5.24 The following is erroneous.

```
switch(rank) {
   case 0:
        MPI_Bcast(buf1, count, type, 0, comm);
        MPI_Bcast(buf2, count, type, 1, comm);
```

65

37

38 39

40

41

42 43

44

 $45 \\ 46$

47

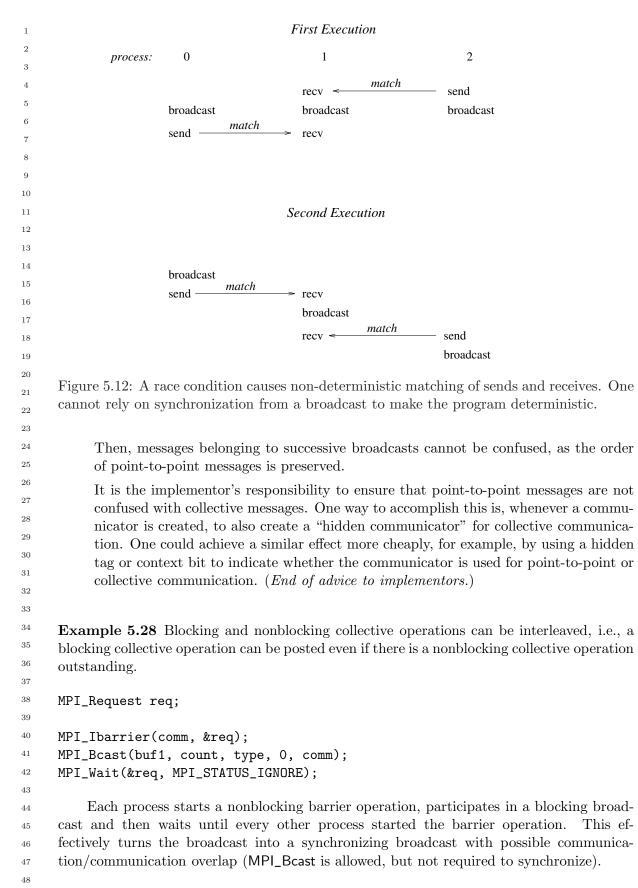
```
1
              break;
\mathbf{2}
          case 1:
3
              MPI_Bcast(buf2, count, type, 1, comm);
4
              MPI_Bcast(buf1, count, type, 0, comm);
5
              break;
6
     }
7
          We assume that the group of comm is \{0,1\}. Two processes execute two broadcast
8
     operations in reverse order. If the operation is synchronizing then a deadlock will occur.
9
          Collective operations must be executed in the same order at all members of the com-
10
     munication group.
11
12
     Example 5.25 The following is erroneous.
13
14
     switch(rank) {
15
          case 0:
16
              MPI_Bcast(buf1, count, type, 0, comm0);
17
              MPI_Bcast(buf2, count, type, 2, comm2);
18
              break;
19
          case 1:
20
              MPI_Bcast(buf1, count, type, 1, comm1);
21
              MPI_Bcast(buf2, count, type, 0, comm0);
22
              break;
23
          case 2:
24
              MPI_Bcast(buf1, count, type, 2, comm2);
25
              MPI_Bcast(buf2, count, type, 1, comm1);
26
              break;
27
     }
28
29
          Assume that the group of comm0 is \{0,1\}, of comm1 is \{1,2\} and of comm2 is \{2,0\}. If
30
     the broadcast is a synchronizing operation, then there is a cyclic dependency: the broadcast
31
     in comm2 completes only after the broadcast in comm0; the broadcast in comm0 completes
32
     only after the broadcast in comm1; and the broadcast in comm1 completes only after the
33
     broadcast in comm2. Thus, the code will deadlock.
34
          Collective operations must be executed in an order so that no cyclic dependencies occur.
35
     Nonblocking collective operations can alleviate this issue.
36
37
     Example 5.26 The following is erroneous.
38
39
     switch(rank) {
40
          case 0:
41
              MPI_Bcast(buf1, count, type, 0, comm);
42
              MPI_Send(buf2, count, type, 1, tag, comm);
43
              break;
44
          case 1:
45
              MPI_Recv(buf2, count, type, 0, tag, comm, status);
46
              MPI_Bcast(buf1, count, type, 0, comm);
47
              break;
48
     }
```

Process zero executes a broadcast, followed by a blocking send operation. Process one first executes a blocking receive that matches the send, followed by broadcast call that matches the broadcast of process zero. This program may deadlock. The broadcast call on process zero *may* block until process one executes the matching broadcast call, so that the send is not executed. Process one will definitely block on the receive and so, in this case, never executes the broadcast.

The relative order of execution of collective operations and point-to-point operations should be such, so that even if the collective operations and the point-to-point operations are synchronizing, no deadlock will occur.

Example 5.27 An unsafe, non-deterministic program.

```
switch(rank) {
    case 0:
        MPI_Bcast(buf1, count, type, 0, comm);
        MPI_Send(buf2, count, type, 1, tag, comm);
        break;
    case 1:
        MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);
        MPI_Bcast(buf1, count, type, 0, comm);
        MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);
        break;
    case 2:
        MPI_Send(buf2, count, type, 1, tag, comm);
        MPI_Bcast(buf1, count, type, 0, comm);
        MPI_Bcast(buf1, count, type, 0, comm);
        MPI_Bcast(buf1, count, type, 0, comm);
        break;
}
```


All three processes participate in a broadcast. Process 0 sends a message to process 1 after the broadcast, and process 2 sends a message to process 1 before the broadcast. Process 1 receives before and after the broadcast, with a wildcard source argument.

Two possible executions of this program, with different matchings of sends and receives, are illustrated in Figure 5.12. Note that the second execution has the peculiar effect that a send executed after the broadcast is received at another node before the broadcast. This example illustrates the fact that one should not rely on collective communication functions to have particular synchronization effects. A program that works correctly only when the first execution occurs (only when broadcast is synchronizing) is erroneous.

Finally, in multithreaded implementations, one can have more than one, concurrently executing, collective communication call at a process. In these situations, it is the user's responsibility to ensure that the same communicator is not used concurrently by two different collective communication calls at the same process.

Advice to implementors. Assume that broadcast is implemented using point-to-point MPI communication. Suppose the following two rules are followed.

- 1. All receives specify their source explicitly (no wildcards).
- 2. Each process sends all messages that pertain to one collective call before sending any message that pertain to a subsequent collective call.

Example 5.29 The starting order of collective operations on a particular communicator defines their matching. The following example shows an erroneous matching of different collective operations on the same communicator.

```
MPI_Request req;
switch(rank) {
    case 0:
        /* erroneous matching */
        MPI_Ibarrier(comm, &req);
        MPI_Bcast(buf1, count, type, 0, comm);
        MPI_Wait(&req, MPI_STATUS_IGNORE);
        break;
    case 1:
        /* erroneous matching */
        MPI_Bcast(buf1, count, type, 0, comm);
        MPI_Bcast(buf1, count, type, 0, comm);
        MPI_Ibarrier(comm, &req);
        MPI_Wait(&req, MPI_STATUS_IGNORE);
        break;
}
```

This ordering would match MPI_Ibarrier on rank 0 with MPI_Bcast on rank 1 which is erroneous and the program behavior is undefined. However, if such an order is required, the user must create different duplicate communicators and perform the operations on them. If started with two processes, the following program would be legal:

```
MPI_Request req;
MPI_Comm dupcomm;
MPI_Comm_dup(comm, &dupcomm);
switch(rank) {
    case 0:
        MPI_Ibarrier(comm, &req);
        MPI_Bcast(buf1, count, type, 0, dupcomm);
        MPI_Wait(&req, MPI_STATUS_IGNORE);
        break;
    case 1:
        MPI_Bcast(buf1, count, type, 0, dupcomm);
        MPI_Ibarrier(comm, &req);
        MPI_Vait(&req, MPI_STATUS_IGNORE);
        break;
}
```

Advice to users. The use of different communicators offers some flexibility regarding the matching of nonblocking collective operations. In this sense, communicators could be used as an equivalent to tags. However, communicator construction might induce overheads so that this should be used carefully. (*End of advice to users.*)

Example 5.30 Nonblocking collective operations can rely on the same progression rules 46 as nonblocking point-to-point messages. Thus, if started with two processes, the following 47 program is a valid MPI program and is guaranteed to terminate: 48

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22

23

24 25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40 41

42

43

44

```
1
     MPI_Request req;
\mathbf{2}
3
     switch(rank) {
4
          case 0:
5
            MPI_Ibarrier(comm, &req);
6
            MPI_Wait(&req, MPI_STATUS_IGNORE);
7
            MPI_Send(buf, count, dtype, 1, tag, comm);
8
            break;
9
          case 1:
10
            MPI_Ibarrier(comm, &req);
11
            MPI_Recv(buf, count, dtype, 0, tag, comm, MPI_STATUS_IGNORE);
12
            MPI_Wait(&req, MPI_STATUS_IGNORE);
13
            break:
14
     }
15
         The MPI library must progress the barrier in the MPI_Recv call. Thus, the MPI_Wait
16
     call in rank 0 will eventually complete, which enables the matching MPI_Send so all calls
17
     eventually return.
18
19
     Example 5.31 Blocking and nonblocking collective operations do not match. The follow-
20
     ing example is illegal.
21
22
     MPI_Request req;
23
24
     switch(rank) {
25
          case 0:
26
            /* illegal false matching of Alltoall and Ialltoall */
27
            MPI_Ialltoall(sbuf, scnt, stype, rbuf, rcnt, rtype, comm, &req);
28
            MPI_Wait(&req, MPI_STATUS_IGNORE);
29
            break;
30
          case 1:
31
            /* illegal false matching of Alltoall and Ialltoall */
32
            MPI_Alltoall(sbuf, scnt, stype, rbuf, rcnt, rtype, comm);
33
            break;
34
     }
35
36
     Example 5.32 Collective and point-to-point requests can be mixed in functions that en-
37
     able multiple completions. If started with two processes, the following program is valid.
38
39
     MPI_Request reqs[2];
40
41
     switch(rank) {
42
          case 0:
43
            MPI_Ibarrier(comm, &reqs[0]);
44
            MPI_Send(buf, count, dtype, 1, tag, comm);
45
            MPI_Wait(&reqs[0], MPI_STATUS_IGNORE);
46
            break;
47
          case 1:
48
            MPI_Irecv(buf, count, dtype, 0, tag, comm, &reqs[0]);
```

```
MPI_Ibarrier(comm, &reqs[1]);
MPI_Waitall(2, reqs, MPI_STATUSES_IGNORE);
break;
```

}

The Waitall call returns only after the barrier and the receive completed.

Example 5.33 Multiple nonblocking collective operations can be outstanding on a single communicator and match in order.

```
MPI_Request reqs[3];
```

```
compute(buf1);
MPI_Ibcast(buf1, count, type, 0, comm, &reqs[0]);
compute(buf2);
MPI_Ibcast(buf2, count, type, 0, comm, &reqs[1]);
compute(buf3);
MPI_Ibcast(buf3, count, type, 0, comm, &reqs[2]);
MPI_Waitall(3, reqs, MPI_STATUSES_IGNORE);
```

Advice to users. Pipelining and double-buffering techniques can efficiently be used to overlap computation and communication. However, having too many outstanding requests might have a negative impact on performance. (*End of advice to users.*)

Advice to implementors. The use of pipelining may generate many outstanding requests. A high-quality hardware-supported implementation with limited resources should be able to fall back to a software implementation if its resources are exhausted. In this way, the implementation could limit the number of outstanding requests only by the available memory. (End of advice to implementors.)

Example 5.34 Nonblocking collective operations can also be used to enable simultaneous collective operations on multiple overlapping communicators (see Figure 5.13). The following example is started with three processes and three communicators. The first communicator comm1 includes ranks 0 and 1, comm2 includes ranks 1 and 2 and comm3 spans ranks 0 and 2. It is not possible to perform a blocking collective operation on all communicators because there exists no deadlock-free order to invoke them. However, nonblocking collective operations can easily be used to achieve this task.

```
MPI_Request reqs[2];
```

```
40
switch(rank) {
                                                                                   41
    case 0:
                                                                                   42
      MPI_Iallreduce(sbuf1, rbuf1, count, dtype, MPI_SUM, comm1, &reqs[0]);
      MPI_Iallreduce(sbuf3, rbuf3, count, dtype, MPI_SUM, comm3, &reqs[1]);
                                                                                   43
                                                                                   44
      break;
                                                                                   45
    case 1:
      MPI_Iallreduce(sbuf1, rbuf1, count, dtype, MPI_SUM, comm1, &reqs[0]);
                                                                                   46
                                                                                   47
      MPI_Iallreduce(sbuf2, rbuf2, count, dtype, MPI_SUM, comm2, &reqs[1]);
                                                                                   48
      break;
```

1

2

3

4

5

6 7

8

9 10

11 12

13

14

15

16

17

18

19 20

21

22

23 24

25

26

27

28

29 30

31

32

33

34

35

36

37 38

```
1
2
                                               comm1
                                      0
3
                                                            1
4
5
                                                      comm2
                                        comm3
6
7
                                                 2
8
9
10
11
                      Figure 5.13: Example with overlapping communicators.
12
13
14
          case 2:
15
            MPI_Iallreduce(sbuf2, rbuf2, count, dtype, MPI_SUM, comm2, &reqs[0]);
16
            MPI_Iallreduce(sbuf3, rbuf3, count, dtype, MPI_SUM, comm3, &reqs[1]);
17
            break;
18
     }
19
     MPI_Waitall(2, regs, MPI_STATUSES_IGNORE);
20
           Advice to users. This method can be useful if overlapping neighboring regions (halo
21
           or ghost zones) are used in collective operations. The sequence of the two calls in
22
23
           each process is irrelevant because the two nonblocking operations are performed on
24
           different communicators. (End of advice to users.)
25
26
     Example 5.35 The progress of multiple outstanding nonblocking collective operations is
27
     completely independent.
28
29
     MPI_Request reqs[2];
30
31
     compute(buf1);
32
     MPI_Ibcast(buf1, count, type, 0, comm, &reqs[0]);
33
     compute(buf2);
34
     MPI_Ibcast(buf2, count, type, 0, comm, &reqs[1]);
35
     MPI_Wait(&reqs[1], MPI_STATUS_IGNORE);
36
     /* nothing is known about the status of the first bcast here */
37
     MPI_Wait(&reqs[0], MPI_STATUS_IGNORE);
38
39
          Finishing the second MPI_IBCAST is completely independent of the first one. This
40
     means that it is not guaranteed that the first broadcast operation is finished or even started
41
     after the second one is completed via reqs[1].
42
43
44
45
46
47
48
```

Bibliography

- T. Hoefler, P. Gottschling, A. Lumsdaine, and W. Rehm. Optimizing a Conjugate Gradient Solver with Non-Blocking Collective Operations. *Elsevier Journal of Parallel Computing (PARCO)*, 33(9):624–633, Sep. 2007. 5.12
- [2] T. Hoefler and A. Lumsdaine. Message Progression in Parallel Computing To Thread or not to Thread? In Proceedings of the 2008 IEEE International Conference on Cluster Computing. IEEE Computer Society, Oct. 2008. 5.12
- [3] T. Hoefler, A. Lumsdaine, and W. Rehm. Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI. In *In proceedings of the 2007 International Conference on High Performance Computing, Networking, Storage and Analysis, SC07.* IEEE Computer Society/ACM, Nov. 2007. 5.12
- [4] T. Hoefler, M. Schellmann, S. Gorlatch, and A. Lumsdaine. Communication Optimization for Medical Image Reconstruction Algorithms. In *Recent Advances in Parallel Virtual Machine and Message Passing Interface*, 15th European PVM/MPI Users' Group Meeting, volume LNCS 5205, pages 75–83. Springer, Sep. 2008. 5.12
- [5] Anthony Skjellum, Nathan E. Doss, and Kishore Viswanathan. Inter-communicator extensions to MPI in the MPIX (MPI eXtension) Library. Technical Report MSU-940722, Mississippi State University — Dept. of Computer Science, April 1994. http://www.erc.msstate.edu/mpi/mpix.html. 5.2.2