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Abstract

Non-blocking collective operations for MPI have been in discussion for a long time. We
want to contribute to this discussion and to give a rationale for the usage these operations and
assess their possible benefits. A LogGP model for the CPU overhead of collective algorithms
and a benchmark to measures it are provided and show a large potential to overlap commu-
nication and computation. We show that non-blocking collective operations can provide at
least the same benefits as non-blocking point to point operations already do. Our claim is that
actual CPU overhead for non-blocking collective operations depends on the message size and
the communicator size and benefits especially highly scalable applications with huge communi-
cators. We prove that the share of the overhead of the overall communication time of current
blocking collective operations gets smaller with bigger communicators and larger messages.
We show that the user level CPU overhead is less than 10% for MPICH2 and LAM/MPI
using TCP/IP communication, which leads us to the conclusion that, by using non-blocking
collective communication, ideally 90% idle CPU time can be freed for the application.

Keywords: Collective communication, Overlap, Non-blocking communication, Message passing
(MPI)

1 Introduction

Non-blocking collective operations and their possible benefits have already been discussed at meet-
ings of the MPI standardization committee. The final decision to not include them into the MPI-2
standard fell at March 6, 19971. However, the fact that the decision was extremely marginal (11

1see: http://www.mpi-forum.org/archives/votes/mpi2.html
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1.1 Related Work 1 INTRODUCTION

yes / 12 no / 2 abstain) suggests that the role of non-blocking collective operations is still de-
batable. Our contention is that non-blocking collective operations are a natural extension to the
MPI-2 standard. We show that non-blocking collective operations can be beneficial for a class of
applications to utilize the available CPU time more efficiently and decrease the time to solution
of these applications significantly. Further, we discuss two main problems of blocking collective
communication which limit the scalability of applications.

First, blocking collective operations have a more or less synchronizing effect on applications which
leads to unnecessary wait time. Even thought the MPI standard does not define other blocking
collective operations than MPI BARRIER to be strictly synchronizing, most used algorithms force
many processes to wait for other processes due to data dependencies. In this way, synchronization
with a single process is enforced for some operations (e.g., a MPI BCAST can not be finished until
the root process called it) and the synchronizing behavior of other operations highly depends on
the implemented collective algorithm. In either case, pseudo-synchronizing behavior often leads
to many lost CPU cycles, a high sensitivity to process skew (e.g., due to daemon processes which
“steal” the CPU occasionally and introduce a pseudo-random skew between processes [1, 2]), and
a high sensitivity to imbalanced programming (e.g., some processes do slightly more computation
than others each round).

Second, most blocking collective operations can not take much advantage of modern interconnects
which enable communication offload to support efficient overlapping of communication and com-
putation. Abstractly seen, each supercomputer or cluster consists of two entities, the CPU which
processes data streams and the network which transports data streams. In many networks, both
entities can act mostly independently of each other, but the programmer has no chance to use this
parallelism efficiently if blocking communication (point-to-point or collective) is used.

Another rationale to offer non-blocking semantics for collective communication is an analogy be-
tween many modern operating systems and the MPI standard. Most modern operating systems
offer possibilities to overlap computation on the host CPU with actions of other entities (for exam-
ple harddisks or the network). Asynchronous I/O and non-blocking TCP/IP sockets are today’s
standard features to communicate. The MPI standard offers non-blocking point-to-point commu-
nication which can be used to overlap communication and computation. It would be a natural
extension to offer also a non-blocking interface to the collective operations.

The next section describes related work in the field of overlap of computation and communication
and the avoidance of synchronization. Section 2 gives some information about possible benefits
of non-blocking collective communication. Section 3 presents benchmark results for a selected set
of operations followed by an example of the application of non-blocking collective operations in
Section 4. The last Section concludes this work and points out directions of further research.

1.1 Related Work

The obvious benefits of overlapping communication with computation and leveraging the hardware
parallelism efficiently with the usage of non-blocking communication is well documented. Analyses
[3, 4, 5] try to give an assessment of the capabilities of MPI implementations to perform overlapping
for point-to-point communications. Many groups analyze the possible performance benefits for
real applications. Liu et al. [6] showed possible speedups up to 1.9 for several parallel programs.
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2 POSSIBLE PERFORMANCE BENEFITS

Brightwell et al. [7] classifies the source of performance advantage for overlap and Dimitrov [8] uses
overlapping as fundamental approach to optimize parallel applications for cluster systems. Other
studies, as [9, 10, 11, 12] apply several transformations to parallel codes to enable overlapping.
However, little research has been done in the field of non-blocking collectives. Studies like [13, 14]
mention that non-blocking collective operations would be beneficial but do not provide a measure
for it. Kale et al. [15] analyzed the applicability of a non-blocking personalized exchange to a small
set of applications in practice. However, many studies show that non-blocking communication and
non-blocking collectives may be beneficial. Our work contributes to the field because we actually
assess the potential performance benefits of a non-blocking collective implementation.

2 Possible Performance Benefits

The most obvious benefits of non-blocking collective operations are the avoidance of explicit pseudo
synchronization and the ability to leverage the hardware parallelism stated in Section 1. The
pseudo-synchronizing behavior of most algorithms cannot be avoided, but non-blocking collective
operations process the operation in the background, which enables the user to ignore most syn-
chronization effects. Common sources for de-synchronization, process skew and load imbalance are
not easily measurable. However, results can increase the application running time dramatically, as
shown in [16]. Theoretical [17] and practical analyses [18, 16] show that operating system noise
and resulting process skew is definitively influencing the performance of parallel applications using
blocking collective operations. Non-blocking collective operations avoid explicit synchronization
unless it is necessary (if the programmer wants to wait for the operation to finish). This enables the
programmer to develop applications which are more tolerant of process skew and load imbalance.

Another benefit is to use the parallelism of the network and computation layers. Non-blocking
communication (point-to-point and collective) allows the user to issue a communication request to
the hardware, perform some useful computation, and ask later if it has been completed. Modern
interconnect networks can perform the message transfer mostly independently of the user pro-
cess. The resulting effect is that, for several algorithms/applications, the user can overlap the
communication latency with useful computation and ignore the communication latency up to a
certain extent (or totally). This has been well analyzed for point-to-point communication (see
Section 1.1). Non-blocking collective operations allow the programmer to combine the benefits
of collective communication [19] with all benefits of non-blocking communication. The follow-
ing subsections analyze the communication behavior of current blocking collective algorithms and
implementations and show that only a fraction of the CPU time is involved into communication
related computation. In relation to previous studies we show, theoretically and practically, that a
similar percentage, in many cases even more, idle CPU time as with non-blocking point-to-point
communication can be gained. We assume that the biggest share of the remaining (idle) CPU
time can be leveraged by the user if overlap of communication and computation together with
non-blocking collective communication can be applied.
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2.1 Modelling CPU and Network Activity 2 POSSIBLE PERFORMANCE BENEFITS

2.1 Modelling CPU and Network Activity

This subsection gives an estimation of the theoretical CPU idle time during a collective operation.
The CPU idle time during the communication will be modelled and benchmarked. Precise models
for collective operations are presented in [20] and for barrier synchronization in [21]. Both studies
show that the LogP [22] or LogGP [23] model is able to predict the communication time sufficiently
accurately if the processes enter the collective operation simultaneously.

We analyze the three collective operations MPI BARRIER, MPI ALLREDUCE, and MPI BCAST
without loss of generality, in detail. As shown in [24, 25, 26], these three operations are frequently
used in real applications. However, the results can also be applied to all other collective operations.

We assume the usual LogP/LogGP communication parameters and γ to assess computation:

L Network latency

o CPU overhead on sender and receiver side

g Network gap (the time to wait between two consecutive message injections)

G Gap per byte (bandwidth for bulk message transfers)

m Message size in bytes

P Number of involved processors

γ Time to compute 1 byte (fetch, compute, store)

We derive simplified LogGP models for networks adhering the properties defined in Section 2.2
in [21] (full bisectional bandwidth; full duplex; unlimited forwarding rate; L, o are constant;
o > L > g). We model point-to-point message based implementations with logarithmic run-
ning time (O(log2P )) of all three operations. We assume the dissemination principle to perform
MPI BARRIER (1), analyzed in [21]. Our model for MPI ALLREDUCE (2) assumes a simple bino-
mial tree reduce implementation followed by MPI BCAST and our MPI BCAST (3) model assumes
a binomial tree implementation (compare proposed models in [20]).

tbarr = (2o+ L) · dlog2P e (1)

tallred = 2 · (2o+ L+m ·G) · dlog2P e+m · γ · dlog2P e (2)

tbcast = (2o+ L+m ·G) · dlog2P e (3)

If we come back to the two entities, which are the network and the processor, mentioned in
Section 1, we realize that each parameter is “accounted” at a specific entity. The processor is only
used by o and γ while the network is used to perform the message transmission (L,g,G). Using this
information, we can divide the equations presented above up into processing and network parts:

tCPUbarr = 2o · dlog2P e tNETbarr = L · dlog2P e (4)

tCPUallred = (4o+m · γ) · dlog2P e tNETallred = 2 · (L+m ·G) · dlog2P e (5)

tCPUbcast = 2o · dlog2P e tNETbcast = (L+m ·G) · dlog2P e (6)
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2.2 Fitting the Model to Modern Architectures 3 BENCHMARK RESULTS

We see that both, tCPU and tNET scale logarithmically with P . However, on modern intercon-
nects the parameters can differ significantly. The following section provides an analysis of these
parameters for modern interconect networks.

2.2 Fitting the Model to Modern Architectures

Modern interconnect architectures, like InfiniBandTM, QuadricsTM, or MyrinetTM, which are used
for HPC systems, try to offload a huge share of the communication into the network interface card.
Traditional networks, like Ethernet (without offloading), still use the CPU extensively to process
network protocols like TCP/IP. However, also Ethernet has been optimized for lower host overhead
with simplified protocols [27] as well as direct user level access and protocol offloading [28]. All
these new networks and approaches aim to reduce the overhead of the main CPU involved in
communication (o parameter). The L parameter is usually greater than the o in modern networks,
and the gap between tCPU and tNET grows with the message size as G ·m is added. This enables
efficient overlapping of computation and communication for point-to-point communication which
has been described in the related work section. However, this idea can also be applied to collective
communication. As one can see in equations (4),(5),(6), the gap between Network and CPU
occupancy also grows with the number of involved processors P . This leads us to the prediction
that especially blocking collectives which communicate large data chunks with many processors
should be mostly utilizing the network (with an idle CPU). The only exception could be reduction
operations, like MPI ALLREDUCE, because they include processing (reduction) of values on the
host CPU. However, in most cases, the bandwidth of the CPU should be much higher than the
network bandwidth. In the following section, we evaluate these theoretical expectations with a
custom benchmark set which measures the CPU usage during blocking collective operations.

3 Benchmark Results

We implemented a benchmark which measures the CPU utilization for different MPI collective
operations. The benchmark uses the standard gettimeofday() and getrusage() functionality
of modern operating systems to measure the idle time. It issues collective calls with different
message sizes and communicator sizes. The benchmark methodology is described as pseudocode
in Listing 1. The getrusage() call returns system time and user time used by the running process
separately. We chose a high number of iterations (10000) in the inner loop (max iter, Line 6) to
be able to neglect the overhead and relative impreciseness of the system functions. We conducted
the benchmark for different MPI implementations shown in Table 1.

Many MPI libraries are implemented in a non-blocking manner which means that the CPU overhead
is, due to polling, 100% regardless of other factors. Only LAM/MPI with TCP/IP and MPICH2
with TCP/IP used blocking communication to perform the collective operations. However, it is
totally correct to use polling to perform blocking MPI collective operations because, at least for
single threaded MPI applications, the CPU is unusable anyways and polling has usually slightly
lower overhead than interrupt based (blocking) methods.

The difference for MPI ALLREDUCE between MPICH2 and LAM/MPI is shown in Figure 1.
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for( proc=1; proc<nproc; proc=proc*2) {

create_communicator(nproc, comm);

for( size=1; size<maxsize; proc=proc*2) {

4 gettimeofday(t1);

getrusage(r1);

for( i=0; i<max_iters; i++)

MPI_Coll(comm, size, MPI_BYTE, ...)

8 getrusage(r2);

gettimeofday(t2);

}

}

Listing 1: Benchmark Methodology (pseudocode)

Implementation Networks
LAM/MPI 7.1.2 InfiniBand, TCP/IP
MPICH2 1.0.3 TCP/IP
Open MPI 1.1a3 InfiniBand and TCP/IP
OSU MVAPICH 0.9.4. InfiniBand

Table 1: Tested MPI Implementations
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Figure 1: MPI ALLREDUCE (user time + system time) overheads for LAM/MPI (left) and MPICH2
(right).

Both exhibit a similar behavior and use only a fraction of the available CPU power for commu-
nicators with more than 8 nodes. MPICH2 causes in the average of all measurement points less
than 30% CPU load while LAM/MPI consumes less then 10%. We see also that the data size
plays an important role because there may be switching points in the collective implementation
where the collective algorithms are changed (e.g., 128kb for MPICH2). However, this overhead
includes the TCP/IP packet processing time spent in the kernel to transmit the messages which is
measured with the getrusage() function as system time. User level, kernel-bypass, and offloading
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4 AN EASY EXAMPLE

communication hardware like InfiniBand, Quadrics or Myrinet does not use the host CPU to pro-
cess packets and does not enter the kernel during message transmission. Figure 2 shows the user
level CPU usage (without TCP/IP processing) for both examples from above. It shows that the
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Figure 2: MPI ALLREDUCE (user time) overheads for LAM/MPI (left) and MPICH2 (right).

CPU overhead for MPI ALLREDUCE, which implies a user level reduction operation in our case, is
below 10% in the average for MPICH2 and below 3% for LAM/MPI. These figures show also that
the share of CPU idle time grows with communicator and data size. Other collective operations
which are not shown here due to space restrictions exhibit a similar behavior.

However, generally speaking, the time to perform a collective operation grows also with commu-
nicator and data size. This means that the overall (multiplicative) CPU waste is even higher.
Figure 3 shows the absolute CPU idle time of both implementations, several collective operations,
and a fixed communicated data size with varying communicator sizes. The effect of growing CPU
waste during blocking collectives is clearly visible. Especially the MPI ALLTOALL operation, which
usually scales worst, shows high CPU idle times with a growing number of participating processes.

Figure 4 shows that absolute CPU idle time of both implementations, for a fixed communicator
size, and varying data sizes. The CPU waste is even higher and scales worse than for the varying
communicator size, nearly linearly with the data size (the figures are plotted with a logarithmic
scale).

4 An easy Example

We chose the solution of a system of n linear equations with Gaussian elimination (row partial
pivoting) and backwards substitution as an easy example to demonstrate the applicability of non-
blocking collective operations. We explain the application of non-blocking collective operations
with an easy row-based data distribution scheme without loss of generality (other parallel distribu-
tions can use the same principle, but the resulting code is more complex). A pseudocode is shown
in Listing 2.
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Figure 3: CPU idle time for some collective functions with varying communicator sizes for a
constant data size of 1kB (left: LAM/MPI, right: MPICH2).
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Figure 4: CPU idle time for some collective functions with varying data size for a constant com-
municator size of 16 processes (left: LAM/MPI, right: MPICH2).

The simplest parallelization of this code needs two global communication operations. Both opera-
tions can be performed using MPI BCAST. The node which owns the row that is currently processed
in the outer loop has to find the pivot row (piv) and to broadcast it to all other processes. The
second broadcast is necessary to distribute the multiplier (mul) of the innermost DAXPY (a×x+y,
Line 8) operation to all processes. The first MPI BCAST (Line 3) is performed n − 1 times and
the second MPI BCAST (Line 7) is called (n − 1)2(n + 1)/2 times. This shows that the second
MPI BCAST dominates the communication time of the algorithm for huge systems.

This innermost collective communication can be efficiently overlapped with non-blocking collective
operations using a well known double buffering method. Double buffering doubles the number
of communication buffers so that one buffer can be involved in communication while the other
buffer is used for computation. The two buffers are swapped (may be a single pointer exchange)
at the end of each communication round. This enables communication to progress independently
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for(k = 0; k < n - 1; k++) {

if(IHaveColumn(k)) { piv = MaxCol(k); }

MPI_Bcast(piv, 1, MPI_INT, rank_has_k, MPI_COMM_WORLD);

4 exchange_row(piv, k);

for(i = k + 1; i < n; i++) {

if(IHaveColumn(k)) { mul = A[k][i] / A[k][k]; }

MPI_Bcast(mul, 1, MPI_DOUBLE, rank_has_k, MPI_COMM_WORLD);

8 daxpy(n, A[i], mul, 1, A[k], 1);

b[i] -= mul * b[k];

}

}

Listing 2: Solution of a system of linear equations (traditional)

of computation and vice versa. Listing 3 shows an easy way to leverage this parallelism for the
innermost MPI BCAST operation. This double buffering approach is usable for many parallel
applications.

We use a 1-round look-ahead scheme where the first multiplier has to be computed and sent in
a blocking manner in advance that the computation can start in the first round. The remaining
multipliers are communicated one round in advance and the communication buffer is copied to
the computation buffer at the end of each round. The non-blocking NBC IBCAST2 issues an
communication request to the communication subsystem and returns directly to the caller. The
communication subsystem may progress the operation independently and ideally, the operation
is already finished when the application reaches the NBC WAIT. However, the communication
progress may depend on many factors (e.g., threaded asynchronous progress of MPI, hardware
support, ...) which are not discussed here.

5 Conclusions

We show that the addition of non-blocking collective operations to the MPI-2 standard would
be a natural extension to the existing interface. We model the potential performance benefit of
overlapping communication with computation during collective operations. The model is proven
and quantified with an extensive analysis of the CPU overhead for TCP/IP based networks. The
results show clearly that, using TCP/IP, more than 70% of the CPU time is wasted in average
during blocking collective operations. We assume that the gap is more than 90% for offloading
based networks such as InfiniBand, Quadrics or Myrinet which do not process messages on the host
CPU. Absolute measurements show the wasted time per collective which can easily be converted
into wasted CPU cycles. These considerations lead to possible optimizations using non-blocking
collective operations.

We propose a simple double buffering scheme to enable the use of non-blocking collective commu-
nication for existing parallel applications or algorithms.

2This is not MPI standardized, the prefix NBC stands for Non-Blocking Collectives
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for(k = 0; k < n - 1; k++) {

if(IHaveColumn(k)) { piv = MaxCol(k); }

MPI_Bcast(piv, 1, MPI_INT, rank_has_k, MPI_COMM_WORLD);

4 exchange_row(piv, k);

/* first element */

if(IHaveColumn(k)) { mul = A[k][k+1] / A[k][k+1]; }

8 MPI_Bcast(mul, 1, MPI_DOUBLE, rank_has_k, MPI_COMM_WORLD, handle);

for(i = k + 1; i < n; i++) {

if(IHaveColumn(k)) { nextmul = A[k][i+1] / A[k][k]; }

12 NBC_Ibcast(mul, 1, MPI_DOUBLE, rank_has_k, MPI_COMM_WORLD, handle);

daxpy(n, A[i], mul, 1, A[k], 1);

b[i] -= mul * b[k];

NBC_Wait(handle);

16 mul = nextmul;

}

}

Listing 3: Solution of a system of linear equations (non-blocking collective implementation)

We are going to implement a portable library (NBC) supporting non-blocking collective operations
on top of MPI-1 and port scientific applications to use the new semantics. However, implementing
collective semantics on top of MPI-1 cannot easily take advantage of special hardware features to
support collective communication (e.g., a hardware barrier [29]). We are planning to move the
non-blocking collective implementation into the extensible Open MPI collective framework [30] to
enable hardware optimized non-blocking collectives.

A prototype of the NBC library is available at: http://www.unixer.de/NBC/.
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