
One Sided Proposal
Version 2

Torsten Hoefler

With comments from Jesper Larsson Träff,

University of Vienna

What changed from v1 (high-level)

• Point-to-point windows dropped

– Forum decided that user has to do memory

management in “collective” windows

• Added collective memory allocation

– cf. MPI_Alloc_mem(), more later

• Disentangled unlock semantics

– Added separate flush() call

• Collective Operation registration

Collective Memory Allocation

• Allows to allocate symmetric memory

– much simpler RDMA implementations

– symmetric to MPI_Alloc_mem()

• MPI_Win_allocate(size, disp, info, comm, base, win)

– accepts similar infos like win_create and alloc_mem

– base is now an out argument instead of in

– memory will be freed in MPI_Win_free()

– Info arguments must be the same on all callers

Collective Op Allocation

• MPI_Rma_op_create(op, win)

– collectively allocates operation in win

– we have to either bind it to window or communicator (to

enable libraries)

– Pro window: can make use of special memory (symmetric allocation)

– Con window: no registration for each window necessary (once per

comm).

– Straw Vote!

– Should we return an MPI_Op or MPI_Rma_op handle?

– Pro MPI_Rma_op: less confusion/user-error

– Con MPI_Rma_op: no new datatype

Fetch and Add
• MPI_Get_accumulate(o_addr, o_cnt, o_type,

rank, t_displ, t_cnt, t_type, op, win)

– fetches value into o_addr and accumulates o_addr

into t_displs

– needs buffering to do so

– Do we want a third buffer to return value in?

– Pro: very flexible, no buffering required (we should

talk about an MPI_IN_PLACE option)

– Con: at least one more argument (if we use same

type as origin layout) -- straw vote!

Accumulate - Get

• MPI_Accumulate_get(o_addr, o_cnt, o_type,

rank, t_displ, t_cnt, t_type, op, win)
– less mighty than get_accumulate

– sufficient for invertible bijective functions

– potentially much faster (no buffering or additional arg.)

New predefined operations?

• we want fast compare&swap semantics

– e.g.,

• MPI_CAS_IF_LARGER

• MPI_CAS_IF_SMALLER

• … that for all MPI types

– Enables hardware optimizations (e.g., IB)

– How to handle count >1 (or forbid it?)

– Any input? Should we pursue (Straw Vote)

Relaxed Correctness Requirements

• every “erroneous” behavior becomes

“undefined” behavior

– allows for programs who really know what

they are doing

– Put/get is still not atomic!

– Accumulate is (need to reconsider)
• and even allows put emulation (MPI_REPLACE)

Passive target multiple epochs!

• Allow multiple simultaneous access

epochs in passive target mode

– Basically, allow multiple locks per rank

– Current model top update two ranks:
• lock(1), update, unlock(1), lock(2), update, unlock(2)

– Potential deadlocks (of course)

• Not worse than p2p though!

• Seems to be a tool issue

Flush the … window

• MPI_Win_flush(rank, win)

– New point-to-point synchronization

• replaces p2p windows

– all operations completed at the target

(public window) when call returns!

• MPI_Win_flush_all(win)

– well, flush all the … ranks

MPI_Alloc_mem()?

• Lift restriction that allows implementers

to only allow passive target mode in

memory returned by MPI_Alloc_mem()

• Could not find an example where this is

necessary

• Limits portability of codes unnecessary

MPI_Win_unlock()

• Should be allowed to not flush()

implicitly!

– Breaks backwards compatibility!

– Or do we want a new call

(MPI_Win_unlock_noflush())

– Straw Vote!

Supporting Cache Coherency
• Be quick, it won’t be there for long

• MPI_Rma_query(optype, win, model)

– returns memory model for (win, op)

– MPI_RMA_ONE

• Public and private windows are the same

(cache coherent)

– MPI_RMA_SEPARATE

• Public and private windows are separate!

Current MPI-2.2 model.

Advice on p. 341

• Advice to implementers should be

dropped!

– “A high-quality implementation will attempt

to prevent remote accesses to memory

outside the window that was exposed by

the process”

– scalability problems!

Questions?

