DRAFT

Document for a Standard Message-Passing Interface

Message Passing Interface Forum

December 9, 2012
This work was supported in part by NSF and ARPA under NSF contract
CDA-9115428 and Esprit under project HPC Standards (21111).



This is the result of a LaTeX run of a draft of a single chapter of the MPIF Final
Report document.

ii



Chapter 7

Process Topologies

7.1 Introduction

This chapter discusses the MPI topology mechanism. A topology is an extra, optional
attribute that one can give to an intra-communicator; topologies cannot be added to inter-
communicators. A topology can provide a convenient naming mechanism for the processes
of a group (within a communicator), and additionally, may assist the runtime system in
mapping the processes onto hardware.

As stated in Chapter 77, a process group in MPI is a collection of n processes. Each
process in the group is assigned a rank between 0 and n-1. In many parallel applications
a linear ranking of processes does not adequately reflect the logical communication pattern
of the processes (which is usually determined by the underlying problem geometry and
the numerical algorithm used). Often the processes are arranged in topological patterns
such as two- or three-dimensional grids. More generally, the logical process arrangement is
described by a graph. In this chapter we will refer to this logical process arrangement as
the “virtual topology.”

A clear distinction must be made between the virtual process topology and the topology
of the underlying, physical hardware. The virtual topology can be exploited by the system
in the assignment of processes to physical processors, if this helps to improve the commu-
nication performance on a given machine. How this mapping is done, however, is outside
the scope of MPI. The description of the virtual topology, on the other hand, depends only
on the application, and is machine-independent. The functions that are described in this
chapter deal with machine-independent mapping and communication on virtual process
topologies.

Rationale. Though physical mapping is not discussed, the existence of the virtual
topology information may be used as advice by the runtime system. There are well-
known techniques for mapping grid/torus structures to hardware topologies such as
hypercubes or grids. For more complicated graph structures good heuristics often
yield nearly optimal results [6]. On the other hand, if there is no way for the user to
specify the logical process arrangement as a “virtual topology,” a random mapping
is most likely to result. On some machines, this will lead to unnecessary contention
in the interconnection network. Some details about predicted and measured perfor-
mance improvements that result from good process-to-processor mapping on modern
wormhole-routing architectures can be found in [1, 2].
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2 CHAPTER 7. PROCESS TOPOLOGIES

Besides possible performance benefits, the virtual topology can function as a conve-
nient, process-naming structure, with significant benefits for program readability and
notational power in message-passing programming. (End of rationale.)

7.2 Virtual Topologies

The communication pattern of a set of processes can be represented by a graph. The
nodes represent processes, and the edges connect processes that communicate with each
other. MPI provides message-passing between any pair of processes in a group. There
is no requirement for opening a channel explicitly. Therefore, a “missing link” in the
user-defined process graph does not prevent the corresponding processes from exchanging
messages. [t means rather that this connection is neglected in the virtual topology. This
strategy implies that the topology gives no convenient way of naming this pathway of
communication. Another possible consequence is that an automatic mapping tool (if one
exists for the runtime environment) will not take account of this edge when mapping.

Specifying the virtual topology in terms of a graph is sufficient for all applications.
However, in many applications the graph structure is regular, and the detailed set-up of the
graph would be inconvenient for the user and might be less efficient at run time. A large frac-
tion of all parallel applications use process topologies like rings, two- or higher-dimensional
grids, or tori. These structures are completely defined by the number of dimensions and
the numbers of processes in each coordinate direction. Also, the mapping of grids and tori
is generally an easier problem than that of general graphs. Thus, it is desirable to address
these cases explicitly.

Process coordinates in a Cartesian structure begin their numbering at 0. Row-major
numbering is always used for the processes in a Cartesian structure. This means that, for
example, the relation between group rank and coordinates for four processes in a (2 x 2)
grid is as follows.

coord (0,0): rank O
coord (0,1): rank 1
coord (1,0): rank 2
coord (1,1): rank 3

7.3 Embedding in MPI

The support for virtual topologies as defined in this chapter is consistent with other parts of
MPI, and, whenever possible, makes use of functions that are defined elsewhere. Topology
information is associated with communicators. It is added to communicators using the
caching mechanism described in Chapter 77.

7.4 OQverview of the Functions

The functions MPI_GRAPH_CREATE, MPI_DIST_GRAPH_CREATE_ADJACENT,
MPI_DIST_GRAPH_CREATE and MPI_CART_CREATE are used to create general (graph)
virtual topologies and Cartesian topologies, respectively. These topology creation functions
are collective. As with other collective calls, the program must be written to work correctly,
whether the call synchronizes or not.
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The topology creation functions take as input an existing communicator
comm_old, which defines the set of processes on which the topology is to be mapped. For
MPI_GRAPH_CREATE and MPI_CART_CREATE, all input arguments must have identical

values on all processes of the group of comm_old. For MPI_DIST_GRAPH_CREATE_ADJACENT

and MPI_DIST_GRAPH_CREATE the input communication graph is distributed across the
calling processes. Therefore the processes provide different values for the arguments spec-
ifying the graph. However, all processes must give the same value for reorder and the
info argument. In all cases, a new communicator comm_topol is created that carries the
topological structure as cached information (see Chapter ??). In analogy to function
MPI_COMM_CREATE, no cached information propagates from comm_old to comm_topol.

MPI_CART_CREATE can be used to describe Cartesian structures of arbitrary dimen-
sion. For each coordinate direction one specifies whether the process structure is periodic or
not. Note that an n-dimensional hypercube is an n-dimensional torus with 2 processes per
coordinate direction. Thus, special support for hypercube structures is not necessary. The
local auxiliary function MPI_DIMS_CREATE can be used to compute a balanced distribution
of processes among a given number of dimensions.

Rationale. Similar functions are contained in EXPRESS [3] and PARMACS. (End of
rationale.)

The function MPI_TOPO_TEST can be used to inquire about the topology associated
with a communicator. The topological information can be extracted from the communicator
using the functions MPI_GRAPHDIMS_GET and MPI_GRAPH_GET, for general graphs, and
MPI_CARTDIM_GET and MPI_CART_GET, for Cartesian topologies. Several additional
functions are provided to manipulate Cartesian topologies: the functions MPI_CART_RANK
and MPI_CART_COORDS translate Cartesian coordinates into a group rank, and vice-
versa; the function MPI_CART_SUB can be used to extract a Cartesian subspace (analo-
gous to MPI_COMM_SPLIT). The function MPI_CART_SHIFT provides the information
needed to communicate with neighbors in a Cartesian dimension. The two functions
MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS can be used to extract
the neighbors of a node in a graph. For distributed graphs, the functions
MPI_DIST_NEIGHBORS_COUNT and MPI_DIST_NEIGHBORS can be used to extract the
neighbors of the calling node. The function MPI_CART_SUB is collective over the input
communicator’s group; all other functions are local.

Two additional functions, MPI_GRAPH_MAP and MPI_CART_MAP are presented in
the last section. In general these functions are not called by the user directly. However,
together with the communicator manipulation functions presented in Chapter 77, they
are sufficient to implement all other topology functions. Section 7.5.8 outlines such an
implementation.

The neighborhood collective communication routines MPI_NEIGHBOR_ALLGATHER,

N

w

IS

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

MPI_NEIGHBOR_ALLGATHERYV, MPI_NEIGHBOR_ALLTOALL, MPI_NEIGHBOR_ALLTOALLV,

land MPI_NEIGHBOR_ALLTOALLW]MPI_NEIGHBOR_ALLTOALLW,
MPI_NEIGHBOR_REDUCE, and MPI_NEIGHBOR_REDUCEV communicate with the near-
est neighbors on the topology associated with the communicator. The nonblocking vari-
ants are MPI_INEIGHBOR_ALLGATHER, MPI_INEIGHBOR_ALLGATHERYV,
MPI_INEIGHBOR_ALLTOALL, MPI_INEIGHBOR_ALLTOALLV, [and

MPI_INEIGHBOR_ALLTOALLW]|MPI_INEIGHBOR_ALLTOALLW, MPI_INEIGHBOR_REDUCE,

and MPI_INEIGHBOR_REDUCEV.

42

43

44

45

47

48

ticket XXX.

ticket X XX.



ticket150.

ticket150.

16

17

18

19

20

21

22

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 7. PROCESS TOPOLOGIES

7.5 Topology Constructors

7.5.1 Cartesian Constructor

MPI_CART_CREATE(comm_old, ndims, dims, periods, reorder, comm_cart)

IN comm_old input communicator (handle)
IN ndims number of dimensions of Cartesian grid (integer)
IN dims integer array of size ndims specifying the number of

processes in each dimension

IN periods logical array of size ndims specifying whether the grid
is periodic (true) or not (false) in each dimension

IN reorder ranking may be reordered (true) or not (false) (logical)

ouT comm_cart communicator with new Cartesian topology (handle)

int MPI_Cart_create(MPI_Comm comm_old, int ndims, int *dims, int *periods,
int reorder, MPI_Comm *comm_cart)

MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS, REORDER, COMM_CART, IERROR)
INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR
LOGICAL PERIODS(*), REORDER

{MPI::Cartcomm MPI::Intracomm::Create_cart(int ndims, const int dims[],
const bool periods[], bool reorder) const (binding deprecated, see
Section 77) }

MPI_CART_CREATE returns a handle to a new communicator to which the Cartesian
topology information is attached. If reorder = false then the rank of each process in the
new group is identical to its rank in the old group. Otherwise, the function may reorder
the processes (possibly so as to choose a good embedding of the virtual topology onto
the physical machine). If the total size of the Cartesian grid is smaller than the size of
the group of comm_old, then some processes are returned MPI_COMM_NULL, in analogy to
MPI_COMM_SPLIT. If ndims is zero then a zero-dimensional Cartesian topology is created.
The call is erroneous if it specifies a grid that is larger than the group size or if ndims is
negative.

7.5.2 Cartesian Convenience Function: MPI_DIMS_CREATE

For Cartesian topologies, the function MPI_DIMS_CREATE helps the user select a balanced
distribution of processes per coordinate direction, depending on the number of processes
in the group to be balanced and optional constraints that can be specified by the user.
One use is to partition all the processes (the size of MPI_COMM_WORLD’s group) into an
n-dimensional topology.
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MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes number of nodes in a grid (integer)
IN ndims number of Cartesian dimensions (integer)
INOUT dims integer array of size ndims specifying the number of

nodes in each dimension

int MPI_Dims_create(int nnodes, int ndims, int *dims)

MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)
INTEGER NNODES, NDIMS, DIMS(*), IERROR

{void MPI::Compute_dims(int nnodes, int ndims, int dims[]) (binding
deprecated, see Section ?77) }

The entries in the array dims are set to describe a Cartesian grid with ndims dimensions
and a total of nnodes nodes. The dimensions are set to be as close to each other as possible,
using an appropriate divisibility algorithm. The caller may further constrain the operation
of this routine by specifying elements of array dims. If dims[i] is set to a positive number,
the routine will not modify the number of nodes in dimension i; only those entries where
dims[i] = 0 are modified by the call.

Negative input values of dims[i] are erroneous. An error will occur if nnodes is not a
multiple of H dims]i].

1,dims[i]#0

For dims[i] set by the call, dims[i] will be ordered in non-increasing order. Array
dims is suitable for use as input to routine MPI_CART_CREATE. MPI_DIMS_CREATE is
local.

dims function call dims

before call on return

(0,0) MPI_DIMS_CREATE(6, 2, dims) | (3,2)
Example 7.1 1 ) MPI_DIMS_CREATE(7, 2, dims) | (7,1)

(0,3,0) MPI_DIMS_CREATE(6, 3, dims) | (2.3,1)

(0,3,0) MPI_DIMS_CREATE(7, 3, dims) | erroneous call
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6 CHAPTER 7. PROCESS TOPOLOGIES

7.5.3 General (Graph) Constructor

MPI_GRAPH_CREATE(comm_old, nnodes, index, edges, reorder, comm_graph)

IN comm_old input communicator (handle)

IN nnodes number of nodes in graph (integer)

IN index array of integers describing node degrees (see below)
IN edges array of integers describing graph edges (see below)
IN reorder ranking may be reordered (true) or not (false) (logical)
ouT comm_graph communicator with graph topology added (handle)

int MPI_Graph_create(MPI_Comm comm_old, int nnodes, int *index, int *edges,
int reorder, MPI_Comm *comm_graph)

MPI_GRAPH_CREATE(COMM_QOLD, NNODES, INDEX, EDGES, REORDER, COMM_GRAPH,
IERROR)

INTEGER COMM_OLD, NNODES, INDEX(*), EDGES(*), COMM_GRAPH, IERROR
LOGICAL REORDER

{MPI: :Graphcomm MPI::Intracomm::Create_graph(int nnodes, const int index[],
const int edges[], bool reorder) const (binding deprecated, see
Section ?77) }

MPI_GRAPH_CREATE returns a handle to a new communicator to which the graph
topology information is attached. If reorder = false then the rank of each process in the
new group is identical to its rank in the old group. Otherwise, the function may reorder the
processes. If the size, nnodes, of the graph is smaller than the size of the group of comm_old,
then some processes are returned MPI_COMM_NULL, in analogy to MPI_CART_CREATE
and MPI_COMM_SPLIT. If the graph is empty, i.e., nnodes == 0, then MPI_COMM_NULL
is returned in all processes. The call is erroneous if it specifies a graph that is larger than
the group size of the input communicator.

The three parameters nnodes, index and edges define the graph structure. nnodes is
the number of nodes of the graph. The nodes are numbered from O to nnodes-1. The
i-th entry of array index stores the total number of neighbors of the first i graph nodes.
The lists of neighbors of nodes 0, 1, ..., nnodes-1 are stored in consecutive locations
in array edges. The array edges is a flattened representation of the edge lists. The total
number of entries in index is nnodes and the total number of entries in edges is equal to the
number of graph edges.

The definitions of the arguments nnodes, index, and edges are illustrated with the
following simple example.

Example 7.2 Assume there are four processes 0, 1, 2, 3 with the following adjacency
matrix:
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process | neighbors
0 1,3
1 0
2 3
3 0, 2

Then, the input arguments are:

nnodes = 4
index = 2,3,4,6
edges = 1,3,0,3,0,2

Thus, in C, index[0] is the degree of node zero, and index[i] - index[i-1] is the
degree of node i, i=1, ..., nnodes-1; the list of neighbors of node zero is stored in
edges[j], for 0 < j < index[0] — 1 and the list of neighbors of node i, i > 0, is stored in
edges[jl, index[i — 1] < j < index[i] — 1.

In Fortran, index (1) is the degree of node zero, and index(i+1) - index (i) is the
degree of node i, i=1, ..., nnodes-1; the list of neighbors of node zero is stored in
edges(j), for 1 < j < index(1) and the list of neighbors of node i, i > 0, is stored in
edges(j), index(i) + 1 < j < index(i + 1).

A single process is allowed to be defined multiple times in the list of neighbors of a
process (i.e., there may be multiple edges between two processes). A process is also allowed
to be a neighbor to itself (i.e., a self loop in the graph). The adjacency matrix is allowed
to be non-symmetric.

Adwvice to users. Performance implications of using multiple edges or a non-symmetric
adjacency matrix are not defined. The definition of a node-neighbor edge does not
imply a direction of the communication. (End of advice to users.)

Advice to implementors. The following topology information is likely to be stored
with a communicator:

e Type of topology (Cartesian/graph),
e For a Cartesian topology:
1. ndims (number of dimensions),
2. dims (numbers of processes per coordinate direction),
3. periods (periodicity information),
4. own_position (own position in grid, could also be computed from rank and
dims)
e For a graph topology:
1. index,
2. edges,

which are the vectors defining the graph structure.

For a graph structure the number of nodes is equal to the number of processes in
the group. Therefore, the number of nodes does not have to be stored explicitly.
An additional zero entry at the start of array index simplifies access to the topology
information. (End of advice to implementors.)
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8 CHAPTER 7. PROCESS TOPOLOGIES

7.5.4 Distributed (Graph) Constructor

The general graph constructor assumes that each process passes the full (global) communi-
cation graph to the call. This limits the scalability of this constructor. With the distributed
graph interface, the communication graph is specified in a fully distributed fashion. Each
process specifies only the part of the communication graph of which it is aware. Typically,
this could be the set of processes from which the process will eventually receive or get
data, or the set of processes to which the process will send or put data, or some combi-
nation of such edges. Two different interfaces can be used to create a distributed graph
topology. MPI_DIST_GRAPH_CREATE_ADJACENT creates a distributed graph commu-
nicator with each process specifying each of its incoming and outgoing (adjacent) edges
in the logical communication graph and thus requires minimal communication during cre-
ation. MPI_DIST_GRAPH_CREATE provides full flexibility, and processes can indicate that
communication will occur between other pairs of processes.

To provide better possibilities for optimization by the MPI library, the distributed
graph constructors permit weighted communication edges and take an info argument that
can further influence process reordering or other optimizations performed by the MPI library.
For example, hints can be provided on how edge weights are to be interpreted, the quality
of the reordering, and/or the time permitted for the MPI library to process the graph.

MPI_DIST_GRAPH_CREATE_ADJACENT (comm_old, indegree, sources, sourceweights, out-
degree, destinations, destweights, info, reorder, comm_dist_graph)

IN comm_old input communicator (handle)

IN indegree size of sources and sourceweights arrays (non-negative
integer)

IN sources ranks of processes for which the calling process is a

destination (array of non-negative integers)

IN sourceweights weights of the edges into the calling process (array of
non-negative integers)

IN outdegree size of destinations and destweights arrays (non-negative
integer)

IN destinations ranks of processes for which the calling process is a

source (array of non-negative integers)

IN destweights weights of the edges out of the calling process (array
of non-negative integers)

IN info hints on optimization and interpretation of weights
(handle)

IN reorder the ranks may be reordered (true) or not (false) (logi-
cal)

ouT comm_dist_graph communicator with distributed graph topology (han-
dle)

int MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int indegree,
int sources[], int sourceweights[], int outdegree,
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int destinations[], int destweights[], MPI_Info info,
int reorder, MPI_Comm *comm_dist_graph)

MPI_DIST_GRAPH_CREATE_ADJACENT(COMM_OLD, INDEGREE, SOURCES, SOURCEWEIGHTS,
OUTDEGREE, DESTINATIONS, DESTWEIGHTS, INFO, REORDER,
COMM_DIST_GRAPH, IERROR)

INTEGER COMM_OLD, INDEGREE, SOURCES(*), SOURCEWEIGHTS(*), OUTDEGREE,
DESTINATIONS(*), DESTWEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR
LOGICAL REORDER

{MPI::Distgraphcomm MPI::Intracomm::Dist_graph_create_adjacent(int
indegree, const int sources[], const int sourceweights[],
int outdegree, const int destinations[],
const int destweights[], const MPI::Info& info, bool reorder)
const (binding deprecated, see Section ?77) }

{MPI::Distgraphcomm
MPI::Intracomm: :Dist_graph_create_adjacent(int indegree,
const int sources[], int outdegree, const int destinations[],
const MPI::Info& info, bool reorder) comnst (binding deprecated,
see Section 77) }

MPI_DIST_GRAPH_CREATE_ADJACENT returns a handle to a new communicator to
which the distributed graph topology information is attached. Each process passes all
information about the edges to its neighbors in the virtual distributed graph topology. The
calling processes must ensure that each edge of the graph is described in the source and
in the destination process with the same weights. If there are multiple edges for a given
(source,dest) pair, then the sequence of the weights of these edges does not matter. The
complete communication topology is the combination of all edges shown in the sources arrays
of all processes in comm_old, which must be identical to the combination of all edges shown
in the destinations arrays. Source and destination ranks must be process ranks of comm_old.
This allows a fully distributed specification of the communication graph. Isolated processes
(i.e., processes with no outgoing or incoming edges, that is, processes that have specified
indegree and outdegree as zero and that thus do not occur as source or destination rank in
the graph specification) are allowed.

The call creates a new communicator comm_dist_graph of distributed graph topology
type to which topology information has been attached. The number of processes in
comm_dist_graph is identical to the number of processes in comm_old. The call to
MPI_DIST_GRAPH_CREATE_ADJACENT is collective.

Weights are specified as non-negative integers and can be used to influence the process
remapping strategy and other internal MPI optimizations. For instance, approximate count
arguments of later communication calls along specific edges could be used as their edge
weights. Multiplicity of edges can likewise indicate more intense communication between
pairs of processes. However, the exact meaning of edge weights is not specified by the MPI
standard and is left to the implementation. In C or Fortran, an application can supply
the special value MPI_UNWEIGHTED for the weight array to indicate that all edges have the
same (effectively no) weight. In C++, this constant does not exist and the weight arguments
may be omitted from the argument list. It is erroneous to supply MPI_UNWEIGHTED, or
in C++4+ omit the weight arrays, for some but not all processes of comm_old. Note that
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10 CHAPTER 7. PROCESS TOPOLOGIES

MPI_UNWEIGHTED is not a special weight value; rather it is a special value for the total
array argument. In C, one would expect it to be NULL. In Fortran, MPI_UNWEIGHTED is
an object like MPI_BOTTOM (not usable for initialization or assignment). See Section ?7.

The meaning of the info and reorder arguments is defined in the description of the
following routine.

MPI_DIST_GRAPH_CREATE(comm_old, n, sources, degrees, destinations, weights, info, re-
order, comm_dist_graph)
IN comm_old input communicator (handle)
IN n number of source nodes for which this process specifies
edges (non-negative integer)
IN sources array containing the n source nodes for which this pro-

cess specifies edges (array of non-negative integers)

IN degrees array specifying the number of destinations for each
source node in the source node array (array of non-
negative integers)

IN destinations destination nodes for the source nodes in the source
node array (array of non-negative integers)

IN weights weights for source to destination edges (array of non-
negative integers)

IN info hints on optimization and interpretation of weights
(handle)

IN reorder the process may be reordered (true) or not (false) (log-
ical)

ouT comm_dist_graph communicator with distributed graph topology added
(handle)

int MPI_Dist_graph_create(MPI_Comm comm_old, int n, int sources[],
int degrees[], int destinations[], int weights[],
MPI_Info info, int reorder, MPI_Comm *comm_dist_graph)

MPI_DIST_GRAPH_CREATE(COMM_OLD, N, SOURCES, DEGREES, DESTINATIONS, WEIGHTS,
INFO, REORDER, COMM_DIST_GRAPH, IERROR)
INTEGER COMM_OLD, N, SOURCES(*), DEGREES(*), DESTINATIONS(*),
WEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR
LOGICAL REORDER

{MPI::Distgraphcomm MPI::Intracomm::Dist_graph_create(int n,
const int sources[], const int degrees[], const int
destinations[], const int weights[], const MPI::Info& info,
bool reorder) const (binding deprecated, see Section 77) }

{MPI::Distgraphcomm MPI::Intracomm::Dist_graph_create(int n,
const int sources[], const int degrees([],
const int destinations[], const MPI::Info& info, bool reorder)
const (binding deprecated, see Section 77) }
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MPI_DIST_GRAPH_CREATE returns a handle to a new communicator to which the
distributed graph topology information is attached. Concretely, each process calls the con-
structor with a set of directed (source,destination) communication edges as described below.
Every process passes an array of n source nodes in the sources array. For each source node, a
non-negative number of destination nodes is specified in the degrees array. The destination
nodes are stored in the corresponding consecutive segment of the destinations array. More
precisely, if the i-th node in sources is s, this specifies degrees[i] edges (s,d) with d of the j-th
such edge stored in destinations[degrees[0]+...+degrees[i-1]+j]. The weight of this edge is
stored in weights[degrees[0]+-...+degrees[i-1]+j]. Both the sources and the destinations arrays
may contain the same node more than once, and the order in which nodes are listed as
destinations or sources is not significant. Similarly, different processes may specify edges
with the same source and destination nodes. Source and destination nodes must be pro-
cess ranks of comm_old. Different processes may specify different numbers of source and
destination nodes, as well as different source to destination edges. This allows a fully dis-
tributed specification of the communication graph. Isolated processes (i.e., processes with
no outgoing or incoming edges, that is, processes that do not occur as source or destination
node in the graph specification) are allowed.

The call creates a new communicator comm_dist_graph of distributed graph topology
type to which topology information has been attached. The number of processes in
comm_dist_graph is identical to the number of processes in comm_old. The call to
MPI_Dist_graph_create is collective.

If reorder = false, all processes will have the same rank in comm_dist_graph as in
comm_old. If reorder = true then the MPI library is free to remap to other processes (of
comm_old) in order to improve communication on the edges of the communication graph.
The weight associated with each edge is a hint to the MPI library about the amount or
intensity of communication on that edge, and may be used to compute a “best” reordering.

Weights are specified as non-negative integers and can be used to influence the process
remapping strategy and other internal MPI optimizations. For instance, approximate count
arguments of later communication calls along specific edges could be used as their edge
weights. Multiplicity of edges can likewise indicate more intense communication between
pairs of processes. However, the exact meaning of edge weights is not specified by the MPI
standard and is left to the implementation. In C or Fortran, an application can supply
the special value MPI_UNWEIGHTED for the weight array to indicate that all edges have the
same (effectively no) weight. In C++, this constant does not exist and the weights argument
may be omitted from the argument list. It is erroneous to supply MPI_UNWEIGHTED, or
in C++4+ omit the weight arrays, for some but not all processes of comm_old. Note that
MPI_UNWEIGHTED is not a special weight value; rather it is a special value for the total
array argument. In C, one would expect it to be NULL. In Fortran, MPI_UNWEIGHTED is
an object like MPI_BOTTOM (not usable for initialization or assignment). See Section 77

The meaning of the weights argument can be influenced by the info argument. Info
arguments can be used to guide the mapping; possible options include minimizing the
maximum number of edges between processes on different SMP nodes, or minimizing the
sum of all such edges. An MPI implementation is not obliged to follow specific hints, and it
is valid for an MPI implementation not to do any reordering. An MPI implementation may
specify more info key-value pairs. All processes must specify the same set of key-value info
pairs.

Advice to implementors. MPI implementations must document any additionally
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12 CHAPTER 7. PROCESS TOPOLOGIES

supported key-value info pairs. MPI_INFO_NULL is always valid, and may indicate the
default creation of the distributed graph topology to the MPI library.

An implementation does not explicitly need to construct the topology from its dis-
tributed parts. However, all processes can construct the full topology from the dis-
tributed specification and use this in a call to MPI_GRAPH_CREATE to create the
topology. This may serve as a reference implementation of the functionality, and
may be acceptable for small communicators. However, a scalable high-quality im-
plementation would save the topology graph in a distributed way. (End of advice to
implementors.)

Example 7.3 As for Example 7.2, assume there are four processes 0, 1, 2, 3 with the
following adjacency matrix and unit edge weights:

process | neighbors
0 1,3
1 0
2 3
3 0, 2

With MPI_DIST_GRAPH_CREATE, this graph could be constructed in many different
ways. One way would be that each process specifies its outgoing edges. The arguments per
process would be:

process | n | sources | degrees | destinations | weights
0 110 2 1,3 1,1
1 1)1 1 0 1
2 112 1 3 1
3 113 2 0,2 1,1

Another way would be to pass the whole graph on process 0, which could be done with
the following arguments per process:

process | n | sources | degrees | destinations | weights
0 410,123 |21,12 | 1,3,03,02 |1,1,1,1,1,1
1 0|- - - -
2 0|- - - -
3 0] - - -

In both cases above, the application could supply MPI_UNWEIGHTED instead of explic-
itly providing identical weights.

MPI_DIST_GRAPH_CREATE_ADJACENT could be used to specify this graph using the
following arguments:

process | indegree | sources | sourceweights | outdegree | destinations | destweights
0 2 1,3 1,1 2 1,3 11
1 1 0 1 1 0 1
2 1 3 1 1 3 1
3 2 0,2 1,1 2 0,2 1,1
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Example 7.4 A two-dimensional Px(Q torus where all processes communicate along the
dimensions and along the diagonal edges. This cannot be modeled with Cartesian topologies,
but can easily be captured with MPI_DIST_GRAPH_CREATE as shown in the following
code. In this example, the communication along the dimensions is twice as heavy as the
communication along the diagonals:

/*

Input: dimensions P, Q

Condition: number of processes equal to P*Q; otherwise only
ranks smaller than P*(Q participate

*/

int rank, x, y;

int sources([1], degrees[1];

int destinations[8], weights[8];

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

/* get x and y dimension */
y=rank/P; x=rank),P;

/* get my communication partners along x dimension */
destinations[0] = Pxy+(x+1)%P; weights[0] = 2;
destinations[1] = Pxy+(P+x-1)%P; weights[1] = 2;

/* get my communication partners along y dimension */
destinations[2] = P*((y+1)%Q)+x; weights[2] = 2;
destinations[3] = Px((Q+y-1)%Q)+x; weights[3] = 2;

/* get my communication partners along diagonals */

destinations[4] = Px((y+1)%Q)+(x+1)%P; weights[4] = 1;
destinations[5] = Px((Q+y-1)%Q)+(x+1)%P; weights[5] = 1;
destinations[6] = Px((y+1)%Q)+(P+x-1)%P; weights[6] 1;

destinations[7] = Px((Q+y-1)%Q)+(P+x-1)%P; weights[7] = 1;

sources [0] rank;

degrees[0] = 8;

MPI_Dist_graph_create(MPI_COMM_WORLD, 1, sources, degrees, destinations,
weights, MPI_INFO_NULL, 1, comm_dist_graph)

7.5.5 Topology Inquiry Functions

If a topology has been defined with one of the above functions, then the topology information
can be looked up using inquiry functions. They all are local calls.
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14 CHAPTER 7. PROCESS TOPOLOGIES

MPI_TOPO_TEST(comm, status)
IN comm communicator (handle)

ouT status topology type of communicator comm (state)

int MPI_Topo_test(MPI_Comm comm, int *status)

MPI_TOPO_TEST(COMM, STATUS, IERROR)
INTEGER COMM, STATUS, IERROR
{int MPI::Comm::Get_topology() const (binding deprecated, see Section 77) }

The function MPI_TOPO_TEST returns the type of topology that is assigned to a
communicator.
The output value status is one of the following:

MPI_GRAPH graph topology

MPI_CART Cartesian topology
MPI_DIST_GRAPH distributed graph topology
MPI_UNDEFINED no topology

MPI_GRAPHDIMS_GET (comm, nnodes, nedges)

IN comm communicator for group with graph structure (handle)

ouT nnodes number of nodes in graph (integer) (same as number
of processes in the group)

ouT nedges number of edges in graph (integer)

int MPI_Graphdims_get(MPI_Comm comm, int *nnodes, int *nedges)

MPI_GRAPHDIMS_GET(COMM, NNODES, NEDGES, IERROR)
INTEGER COMM, NNODES, NEDGES, IERROR

{void MPI::Graphcomm: :Get_dims(int nnodes[], int nedges[]) const (binding
deprecated, see Section ?77) }

Functions MPI_GRAPHDIMS_GET and MPI_GRAPH_GET retrieve the graph-topology
information that was associated with a communicator by MPI_GRAPH_CREATE.

The information provided by MPI_GRAPHDIMS_GET can be used to dimension the
vectors index and edges correctly for the following call to MPI_GRAPH_GET.
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MPI_GRAPH_GET(comm, maxindex, maxedges, index, edges)

IN comm communicator with graph structure (handle)

IN maxindex length of vector index in the calling program
(integer)

IN maxedges length of vector edges in the calling program
(integer)

ouT index array of integers containing the graph structure (for

details see the definition of MPI_GRAPH_CREATE)

ouT edges array of integers containing the graph structure
int MPI_Graph_get(MPI_Comm comm, int maxindex, int maxedges, int *index,
int *edges)

MPI_GRAPH_GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)
INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(x*), IERROR

{void MPI::Graphcomm: :Get_topo(int maxindex, int maxedges, int index[],
int edges([]) const (binding deprecated, see Section 7?7) }

MPI_CARTDIM_GET (comm, ndims)

IN comm communicator with Cartesian structure (handle)
ouT ndims number of dimensions of the Cartesian structure (in-
teger)

int MPI_Cartdim_get(MPI_Comm comm, int *ndims)

MPI_CARTDIM_GET(COMM, NDIMS, IERROR)
INTEGER COMM, NDIMS, IERROR

{int MPI::Cartcomm::Get_dim() const (binding deprecated, see Section 77) }

The functions MPI_CARTDIM_GET and MPI_CART_GET return the Cartesian topol-
ogy information that was associated with a communicator by MPI_CART_CREATE. If comm
is associated with a zero-dimensional Cartesian topology, MPI_CARTDIM_GET returns
ndims=0 and MPI_CART_GET will keep all output arguments unchanged.
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16 CHAPTER 7. PROCESS TOPOLOGIES

MPI_CART_GET(comm, maxdims, dims, periods, coords)

IN comm communicator with Cartesian structure (handle)

IN maxdims length of vectors dims, periods, and coords in the
calling program (integer)

ouT dims number of processes for each Cartesian dimension (ar-
ray of integer)

ouT periods periodicity (true/false) for each Cartesian dimension
(array of logical)

ouT coords coordinates of calling process in Cartesian structure
(array of integer)

int MPI_Cart_get(MPI_Comm comm, int maxdims, int *dims, int #*periods,
int *coords)

MPI_CART_GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)
INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERROR
LOGICAL PERIODS(*)

{void MPI::Cartcomm: :Get_topo(int maxdims, int dims[], bool periods([],
int coords[]) comnst (binding deprecated, see Section 77) }

MPI_CART_RANK(comm, coords, rank)

IN comm communicator with Cartesian structure (handle)

IN coords integer array (of size ndims) specifying the Cartesian
coordinates of a process

ouT rank rank of specified process (integer)

int MPI_Cart_rank(MPI_Comm comm, int *coords, int *rank)

MPI_CART_RANK(COMM, COORDS, RANK, IERROR)
INTEGER COMM, COORDS(*), RANK, IERROR

{int MPI::Cartcomm::Get_cart_rank(const int coords[]) const (binding
deprecated, see Section ?77) }

For a process group with Cartesian structure, the function MPI_CART_RANK trans-
lates the logical process coordinates to process ranks as they are used by the point-to-point
routines.

For dimension i with periods(i) = true, if the coordinate, coords(i), is out of
range, that is, coords(i) < 0 or coords(i) > dims(i), it is shifted back to the interval
0 < coords(i) < dims(i) automatically. Out-of-range coordinates are erroneous for
non-periodic dimensions.

If comm is associated with a zero-dimensional Cartesian topology, coords is not signif-
icant and 0 is returned in rank.
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MPI_CART_COORDS(comm, rank, maxdims, coords)

IN comm communicator with Cartesian structure (handle)

IN rank rank of a process within group of comm (integer)

IN maxdims length of vector coords in the calling program (inte-
ger)

ouT coords integer array (of size ndims) containing the Cartesian

coordinates of specified process (array of integers)

int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int *coords)

MPI_CART_COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)
INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR

{void MPI::Cartcomm: :Get_coords(int rank, int maxdims, int coords[]) const
(binding deprecated, see Section 77) }

The inverse mapping, rank-to-coordinates translation is provided by
MPI_CART_COORDS.

If comm is associated with a zero-dimensional Cartesian topology,
coords will be unchanged.

MPI_GRAPH_NEIGHBORS_COUNT (comm, rank, nneighbors)

IN comm communicator with graph topology (handle)
IN rank rank of process in group of comm (integer)
ouT nneighbors number of neighbors of specified process (integer)

int MPI_Graph_neighbors_count(MPI_Comm comm, int rank, int *nneighbors)

MPI_GRAPH_NEIGHBORS_COUNT(COMM, RANK, NNEIGHBORS, IERROR)
INTEGER COMM, RANK, NNEIGHBORS, IERROR

{int MPI::Graphcomm: :Get_neighbors_count(int rank) const (binding deprecated,
see Section 77) }

MPI_GRAPH_NEIGHBORS(comm, rank, maxneighbors, neighbors)

IN comm communicator with graph topology (handle)

IN rank rank of process in group of comm (integer)

IN maxneighbors size of array neighbors (integer)

ouT neighbors ranks of processes that are neighbors to specified pro-

cess (array of integer)

int MPI_Graph_neighbors(MPI_Comm comm, int rank, int maxneighbors,
int *neighbors)
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1 MPI_GRAPH_NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)

) 2 INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR
ticket150. 5

{void MPI::Graphcomm: :Get_neighbors(int rank, int maxneighbors, int

ticket150. : neighbors[]) const (binding deprecated, see Section 77) }
6 MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS provide adjacency
7 information for a general graph topology. The returned count and array of neighbors for
8 the queried rank will both include all neighbors and reflect the same edge ordering as

0 was specified by the original call to MPI_GRAPH_CREATE. Specifically,
10 MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS will return values based
1 on the original index and edges array passed to MPI_GRAPH_CREATE (assuming that

12 index [-1] effectively equals zero):

13

14 e The number of neighbors (nneighbors) returned from MPI_GRAPH_NEIGHBORS_COUNT
15 will be (index [rank] - index[rank-1]).

e The neighbors array returned from MPI_GRAPH_NEIGHBORS will be
edges [index [rank-1]] through edges[index[rank]-1].

Example 7.5 Assume there are four processes 0, 1, 2, 3 with the following adjacency

matrix (note that some neighbors are listed multiple times):
21

2 process | neighbors
23 0 1,1, 3
2 1 0,0
25 2 3
26 3 0, 2, 2
27
28 Thus, the input arguments to MPI_GRAPH_CREATE are:
zz nnodes = 4
" index = 3,95,6,9
- edges = 1,1,3,0,0, 3,0, 2,2
33 Therefore, calling MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS
34 for each of the 4 processes will return:
35
36 Input rank Count Neighbors
37 0 3 1,1, 3
ag 1 2 0,0
39 2 1 3
3 3 0, 2,2

40

41

2 Example 7.6 Suppose that comm is a communicator with a shuffle-exchange topology. The

group has 2" members. Each process is labeled by aq,...,a, with a; € {0,1}, and has
three neighbors: exchange(ay,...,a,) = ai,...,an—1,a, (@ =1 — a), shuffle(ay,...,a,) =
az,...,an,a1, and unshuffle(as,...,a,) = ap,a1,...,a,—1. The graph adjacency list is
illustrated below for n = 3.
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node exchange shuffle unshuffle 1
neighbors(1) neighbors(2) neighbors(3) 2

0 (000) 1 0 0 3
1 (001) 0 2 4 4
2 (010) 3 4 1 5
3 (011) 2 6 5 6
4 (100) 5 1 2 7
5 (101) 4 3 6 8
6 (110) 7 5 3 9
7 (111) 6 7 7 10
11

Suppose that the communicator comm has this topology associated with it. The follow- 12

ing code fragment cycles through the three types of neighbors and performs an appropriate 13
permutation for each. 14
15

C assume: each process has stored a real number A. 16
C extract neighborhood information 17
CALL MPI_COMM_RANK(comm, myrank, ierr) 18

CALL MPI_GRAPH_NEIGHBORS(comm, myrank, 3, neighbors, ierr) 19

C perform exchange permutation 20
CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(1l), O, 21

+ neighbors(1), O, comm, status, ierr) 29

C perform shuffle permutation 23
CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(2), O, 24

+ neighbors(3), 0, comm, status, ierr) 25

C perform unshuffle permutation 26
CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(3), O, 27

+ neighbors(2), 0, comm, status, ierr) 28

29

MPI_DIST_GRAPH_NEIGHBORS_COUNT and MPI_DIST_GRAPH_NEIGHBORS pro-
vide adjacency information for a distributed graph topology.

30

31

32

MPI_DIST_GRAPH_NEIGHBORS_COUNT (comm, indegree, outdegree, weighted) 33
34

IN comm communicator with distributed graph topology (han- 35
dle) 36

ouT indegree number of edges into this process (non-negative inte- 37
ger) 38

ouT outdegree number of edges out of this process (non-negative in- *
teger) 0

41

ouT weighted false if MPI_UNWEIGHTED was supplied during cre- 12
ation, true otherwise (logical) 43

44

int MPI_Dist_graph_neighbors_count(MPI_Comm comm, int *indegree, 45
int *outdegree, int *weighted) 46

MPI_DIST_GRAPH_NEIGHBORS_COUNT(COMM, INDEGREE, OUTDEGREE, WEIGHTED, IERROR) v

48
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1 INTEGER COMM, INDEGREE, OUTDEGREE, IERROR

LOGICAL WEIGHTED
ticket150. z

. {void MPI: :Distgraphcomm: :Get_dist_neighbors_count(int rank,
ticket150. int indegree[], int outdegree[], bool& weighted) const (binding
deprecated, see Section ?77) }

0 MPI_DIST_GRAPH_NEIGHBORS(comm, maxindegree, sources, sourceweights, maxoutdegree,
.o destinations, destweights)

11 IN comm communicator with distributed graph topology (han-
12 dle)
" IN maxindegree size of sources and sourceweights arrays (non-negative
14

integer)
15
16 ouT sources processes for which the calling process is a destination
17 (array of non-negative integers)
18 ouT sourceweights weights of the edges into the calling process (array of
19 non-negative integers)
0 IN maxoutdegree size of destinations and destweights arrays (non-negative
* integer)
22
23 ouT destinations processes for which the calling process is a source (ar-
04 ray of non-negative integers)
25 ouT destweights weights of the edges out of the calling process (array
26 of non-negative integers)

27

8 int MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree, int sources[],

int sourceweights[], int maxoutdegree, int destinations[],
int destweights[])

29
30

31

32 MPI_DIST_GRAPH_NEIGHBORS (COMM, MAXINDEGREE, SOURCES, SOURCEWEIGHTS,
33 MAXOUTDEGREE, DESTINATIONS, DESTWEIGHTS, IERROR)
34 INTEGER COMM, MAXINDEGREE, SOURCES(*), SOURCEWEIGHTS(*), MAXOUTDEGREE,
35 DESTINATIONS(*), DESTWEIGHTS(*), IERROR
ticket150.

% {void MPI::Distgraphcomm: :Get_dist_neighbors(int maxindegree,

37 int sources[], int sourceweights[], int maxoutdegree,

38

ticket150. int destinations[], int destweights[]l) (binding deprecated, see
39 .
Section 77) }
40
41 These calls are local. The number of edges into and out of the process returned by

42 MPI_DIST_GRAPH_NEIGHBORS_COUNT are the total number of such edges given in the
43 call to MPI_DIST_GRAPH_CREATE_ADJACENT or MPI_DIST_GRAPH_CREATE (poten-
44 tially by processes other than the calling process in the case of

45 MPI_DIST_GRAPH_CREATE). Multiply defined edges are all counted and returned by
46 MPI_DIST_GRAPH_NEIGHBORS in some order. If MPI_UNWEIGHTED is supplied for

a7 sourceweights or destweights or both, or if MPI_UNWEIGHTED was supplied during the con-
48 struction of the graph then no weight information is returned in that array or those arrays.
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If the communicator was created with MPI_DIST_GRAPH_CREATE_ADJACENT then for
each rank in comm, the order of the values in sources and destinations is identical to the in-
put that was used by the process with the same rank in comm_old in the creation call. If the
communicator was created with MPI_DIST_GRAPH_CREATE then the only requirement on
the order of values in sources and destinations is that two calls to the routine with same input
argument comm will return the same sequence of edges. If maxindegree or maxoutdegree is
smaller than the numbers returned by MPI_DIST_GRAPH_NEIGHBOR_COUNT, then only
the first part of the full list is returned.

Advice to implementors. Since the query calls are defined to be local, each process
needs to store the list of its neighbors with incoming and outgoing edges. Communica-
tion is required at the collective MPI_DIST_GRAPH_CREATE call in order to compute
the neighbor lists for each process from the distributed graph specification. (End of
advice to implementors.)

7.5.6 Cartesian Shift Coordinates

If the process topology is a Cartesian structure, an MPI_SENDRECV operation is likely to
be used along a coordinate direction to perform a shift of data. As input, MPI_SENDRECV
takes the rank of a source process for the receive, and the rank of a destination process for the
send. If the function MPI_CART_SHIFT is called for a Cartesian process group, it provides
the calling process with the above identifiers, which then can be passed to MPI_SENDRECV.
The user specifies the coordinate direction and the size of the step (positive or negative).
The function is local.

MPI_CART_SHIFT(comm, direction, disp, rank_source, rank_dest)

IN comm communicator with Cartesian structure (handle)

IN direction coordinate dimension of shift (integer)

IN disp displacement (> 0: upwards shift, < 0: downwards
shift) (integer)

ouT rank_source rank of source process (integer)

ouT rank_dest rank of destination process (integer)

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,
int *rank_source, int *rank_dest)

MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR)
INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR

{void MPI::Cartcomm::Shift(int direction, int disp, int& rank_source,
int& rank_dest) comst (binding deprecated, see Section 77) }

The direction argument indicates the coordinate dimension to be traversed by the shift.
The dimensions are numbered from 0 to ndims-1, where ndims is the number of dimensions.
Depending on the periodicity of the Cartesian group in the specified coordinate direc-
tion, MPI_CART _SHIFT provides the identifiers for a circular or an end-off shift. In the case
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of an end-off shift, the value MPI_PROC_NULL may be returned in rank_source or rank_dest,
indicating that the source or the destination for the shift is out of range.

It is erroneous to call MPI_CART_SHIFT with a direction that is either negative or
greater than or equal to the number of dimensions in the Cartesian communicator. This
implies that it is erroneous to call MPI_CART_SHIFT with a comm that is associated with
a zero-dimensional Cartesian topology.

Example 7.7 The communicator, comm, has a two-dimensional, periodic, Cartesian topol-
ogy associated with it. A two-dimensional array of REALs is stored one element per process,
in variable A. One wishes to skew this array, by shifting column i (vertically, i.e., along the
column) by i steps.

C find process rank
CALL MPI_COMM_RANK(comm, rank, ierr)
C find Cartesian coordinates
CALL MPI_CART_COORDS(comm, rank, maxdims, coords, ierr)
C compute shift source and destination
CALL MPI_CART_SHIFT(comm, O, coords(2), source, dest, ierr)
C skew array
CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, dest, O, source, 0O, comm,
+ status, ierr)

Advice to users. In Fortran, the dimension indicated by DIRECTION = i has DIMS(i+1)
nodes, where DIMS is the array that was used to create the grid. In C, the dimension
indicated by direction = i is the dimension specified by dims[i]. (End of advice to users.)

7.5.7 Partitioning of Cartesian Structures

MPI_CART_SUB(comm, remain_dims, newcomm)
IN comm communicator with Cartesian structure (handle)

IN remain_dims the i-th entry of remain_dims specifies whether the
i-th dimension is kept in the subgrid (true) or is drop-
ped (false) (logical vector)

ouT newcomm communicator containing the subgrid that includes
the calling process (handle)

int MPI_Cart_sub(MPI_Comm comm, int *remain_dims, MPI_Comm *newcomm)

MPI_CART_SUB(COMM, REMAIN_DIMS, NEWCOMM, IERROR)
INTEGER COMM, NEWCOMM, IERROR
LOGICAL REMAIN_DIMS(*)

{MPI::Cartcomm MPI::Cartcomm::Sub(const bool remain_dims[]) const (binding
deprecated, see Section ?77) }

If a Cartesian topology has been created with MPI_CART_CREATE, the function
MPI_CART_SUB can be used to partition the communicator group into subgroups that
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form lower-dimensional Cartesian subgrids, and to build for each subgroup a communicator
with the associated subgrid Cartesian topology. If all entries in remain_dims are false or
comm is already associated with a zero-dimensional Cartesian topology then newcomm is
associated with a zero-dimensional Cartesian topology. (This function is closely related to
MPI_COMM_SPLIT.)

Example 7.8 Assume that MPI_CART_CREATE(..., comm) has defined a (2 x 3 x 4)
grid. Let remain_dims = (true, false, true). Then a call to,

MPI_CART_SUB(comm, remain_dims, comm_new),

will create three communicators each with eight processes in a 2 x 4 Cartesian topol-
ogy. If remain_dims = (false, false, true) then the call to MPI_CART_SUB(comm,
remain_dims, comm_new) will create six non-overlapping communicators, each with four
processes, in a one-dimensional Cartesian topology.

7.5.8 Low-Level Topology Functions

The two additional functions introduced in this section can be used to implement all other
topology functions. In general they will not be called by the user directly, unless he or she
is creating additional virtual topology capability other than that provided by MPI.

MPI_CART_MAP(comm, ndims, dims, periods, newrank)

IN comm input communicator (handle)
IN ndims number of dimensions of Cartesian structure (integer)
IN dims integer array of size ndims specifying the number of

processes in each coordinate direction

IN periods logical array of size ndims specifying the periodicity
specification in each coordinate direction

ouT newrank reordered rank of the calling process;
MPI_UNDEFINED if calling process does not belong
to grid (integer)

int MPI_Cart_map(MPI_Comm comm, int ndims, int *dims, int *periods,
int *newrank)

MPI_CART_MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)
INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERROR
LOGICAL PERIODS (%)

{int MPI::Cartcomm::Map(int ndims, const int dims[], const bool periods[])
const (binding deprecated, see Section ?77) }

MPI_CART_MAP computes an “optimal” placement for the calling process on the phys-
ical machine. A possible implementation of this function is to always return the rank of the
calling process, that is, not to perform any reordering.
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Advice to implementors. The function MPI_CART_CREATE(comm, ndims, dims, pe-
riods, reorder, comm_cart), with reorder = true can be implemented by calling
MPI_CART_MAP(comm, ndims, dims, periods, newrank), then calling
MPI_COMM_SPLIT(comm, color, key, comm_cart), with color = 0 if newrank #
MPI_UNDEFINED, color = MPI_UNDEFINED otherwise, and key = newrank.

The function MPI_CART_SUB(comm, remain_dims, comm_new) can be implemented
by a call to MPI_COMM_SPLIT(comm, color, key, comm_new), using a single number
encoding of the lost dimensions as color and a single number encoding of the preserved
dimensions as key.

All other Cartesian topology functions can be implemented locally, using the topology
information that is cached with the communicator. (End of advice to implementors.)

The corresponding new function for general graph structures is as follows.

MPI_GRAPH_MAP(comm, nnodes, index, edges, newrank)

IN comm input communicator (handle)

IN nnodes number of graph nodes (integer)

IN index integer array specifying the graph structure, see
MPI_GRAPH_CREATE

IN edges integer array specifying the graph structure

ouT newrank reordered rank of the calling process;
MPI_UNDEFINED if the calling process does not be-
long to graph (integer)

int MPI_Graph_map(MPI_Comm comm, int nnodes, int *index, int *edges,

int *newrank)

MPI_GRAPH_MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)

INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERROR

{int MPI::Graphcomm::Map(int nnodes, const int index[], const int edges[])

7.6

const (binding deprecated, see Section ?77) }

Advice to implementors. The function MPI_GRAPH_CREATE(comm, nnodes, index,
edges, reorder, comm_graph), with reorder = true can be implemented by calling
MPI_GRAPH_MAP(comm, nnodes, index, edges, newrank), then calling
MPI_COMM_SPLIT(comm, color, key, comm_graph), with color = 0 if newrank #
MPI_UNDEFINED, color = MPI_UNDEFINED otherwise, and key = newrank.

All other graph topology functions can be implemented locally, using the topology
information that is cached with the communicator. (End of advice to implementors.)

Neighborhood Collective Communication on Process Topologies

MPI process topologies specify a communication graph, but they implement no commu-
nication function themselves. Many applications require sparse nearest neighbor commu-
nications that can be expressed as graph topologies. We now describe several collective
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operations that perform communication along the edges of a process topology. All these
functions are collective; i.e., they must be called by all processes in the specified com-
municator. See Section ?? on page ?? for an overview of other dense (global) collective
communication operations and the semantics of collective operations.

If the graph was created with MPI_DIST_GRAPH_CREATE_ADJACENT with sources
and destinations containing 0, ..., n-1, where n is the number of processes in the group
of comm_old (i.e., the graph is fully connected and includes also an edge from each node
to itself), then the sparse neighborhood communication routine performs the same data
exchange as the corresponding dense (fully-connected) collective operation. In the case of a
Cartesian communicator, only nearest neighbor communication is provided, corresponding
to rank_source and rank_dist in MPI_CART_SHIFT with input disp=1.

Rationale. Neighborhood collective communications enable communication on a
process topology. This high-level specification of data exchange among neighboring
processes enables optimizations in the MPI library because the communication pattern
is known statically (the topology). Thus, the implementation can compute optimized
message schedules during creation of the topology [5]. This functionality can signifi-
cantly simplify the implementation of neighbor exchanges [4]. (End of rationale.)

For a distributed graph topology, created with MPI_DIST_GRAPH_CREATE, the se-
quence of neighbors in the send and receive buffers at each process is defined as the se-
quence returned by MPI_DIST_GRAPH_NEIGHBORS for destinations and sources, respec-
tively. For a general graph topology, created with MPI_GRAPH_CREATE, the order of
neighbors in the send and receive buffers is defined as the sequence of neighbors as re-
turned by MPI_GRAPH_NEIGHBORS. Note that general graph topologies should generally
be replaced by the distributed graph topologies.

For a Cartesian topology, created with MPI_CART_CREATE, the sequence of neigh-
bors in the send and receive buffers at each process is defined by order of the dimensions,
first the neighbor in the negative direction and then in the positive direction with dis-
placement 1. The numbers of sources and destinations in the communication routines are
2*ndims with ndims defined in MPI_CART_CREATE. If a neighbor does not exist, i.e., at
the border of a Cartesian topology in the case of a non-periodic virtual grid dimension (i.e.,
periods[...]==false), then this neighbor is defined to be MPI_PROC_NULL.

If a neighbor in any of the functions is MPI_PROC_NULL, then the neighborhood collec-
tive communication behaves like a point-to-point communication with MPI_PROC_NULL in
this direction. That is, the buffer is still part of the sequence of neighbors but it is neither
communicated nor updated.

7.6.1 Neighborhood Gather

In this function, each process i gathers data items from each process j if an edge (j,7) exists
in the topology graph, and each process ¢ sends the same data items to all processes j where
an edge (i, j) exists. The send buffer is sent to each neighboring process and the [-th block
in the receive buffer is received from the [-th neighbor.
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MPI_NEIGHBOR_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor (non-negative
integer)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf starting address of receive buffer (choice)

IN recvcount number of elements received from each neighbor (non-

negative integer)
IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_allgather(void* sendbuf, int sendcount, MPI_Datatype
sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

MPI_NEIGHBOR_ALLGATHER (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6 on page 24. If comm is a distributed graph
communicator, the outcome is as if each process executed sends to each of its outgoing
neighbors and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count (comm,&indegree,&outdegree,&weighted) ;

int *srcs=(int*)malloc(indegree*sizeof (int));

int *dsts=(int*)malloc(outdegreex*sizeof (int));
MPI_Dist_graph_neighbors(comm,indegree,srcs,outdegree,dsts,MPI_UNWEIGHTED) ;
int k,1;

for(k=0; k<outdegree; ++k)
MPI_Isend(sendbuf,sendcount,sendtype,dstsl[k],...);

for(1=0; 1l<indegree; ++1)
MPI_Irecv(recvbuf+l*recvcount*extent(recvtype),recvcount,recvtype,
srcs[1],...);

MPI_Waitall(...)

Figure 7.6.1 shows the neighborhood gather communication of one process with out-
going neighbors dj . . . d3 and incoming neighbors sq ... s5. The process will send its sendbuf
to all four destinations (outgoing neighbors) and it will receive the contribution from all six
sources (incoming neighbors) into separate locations of its receive buffer.

All arguments are significant on all processes and the argument
comm must have identical values on all processes.
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do
da, 54
S0
dy = S1
So 83
ds, s5
sendbuf
S0 S1 52 S3 S4 S5
recvbuf

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at all other processes. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of communicating processes. Distinct type maps between sender and receiver are
still allowed.

Rationale. For optimization reasons, the same type signature is required indepen-
dently of whether the topology graph is connected or not. (End of rationale.)

The “in place” option is not meaningful for this operation.
The vector variant of MPI_NEIGHBOR_ALLGATHER allows one to gather different
numbers of elements from each neighbor.
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MPI_NEIGHBOR_ALLGATHERV((sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor (non-negative
integer)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree) con-

taining the number of elements that are received from
each neighbor

IN displs integer array (of length indegree). Entry i specifies
the displacement (relative to recvbuf) at which to place
the incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_allgatherv(void* sendbuf, int sendcount, MPI_Datatype
sendtype, void* recvbuf, int recvcounts[], int displs[],
MPI_Datatype recvtype, MPI_Comm comm)

MPI_NEIGHBOR_ALLGATHERV (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,
DISPLS, RECVTYPE, COMM, IERROR)
<type> SENDBUF (*), RECVBUF (x)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(%*), RECVTYPE, COMM,
IERROR

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6 on page 24. If comm is a distributed graph
communicator, the outcome is as if each process executed sends to each of its outgoing
neighbors and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count (comm,&indegree,&outdegree,&weighted) ;

int *srcs=(int*)malloc(indegree*sizeof (int));

int *dsts=(int*)malloc(outdegree*sizeof (int));
MPI_Dist_graph_neighbors(comm,indegree,srcs,outdegree,dsts,MPI_UNWEIGHTED) ;
int k,1;

for(k=0; k<outdegree; ++k)
MPI_Isend(sendbuf,sendcount,sendtype,dsts[k],...);

for(1=0; 1l<indegree; ++1)
MPI_Irecv(recvbuf+displs[1l]*extent (recvtype) ,recvcounts[1l],recvtype,

srcs[1],...);

MPI_Waitall(...)
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The type signature associated with sendcount, sendtype, at process j must be equal
to the type signature associated with recvcounts[1], recvtype at any other process with
srcs[1]==j. This implies that the amount of data sent must be equal to the amount of
data received, pairwise between every pair of communicating processes. Distinct type maps
between sender and receiver are still allowed. The data received from the 1-th neighbor is
placed into recvbuf beginning at offset displs[1] elements (in terms of the recvtype).

The “in place” option is not meaningful for this operation.

All arguments are significant on all processes and the argument
comm must have identical values on all processes.

7.6.2 Neighbor Alltoall

In this function, each process ¢ receives data items from each process j if an edge (j,1)
exists in the topology graph or Cartesian topology. Similarly, each process ¢ sends data
items to all processes j where an edge (i,7) exists. This call is more general than
MPI_NEIGHBOR_ALLGATHER in that different data items can be sent to each neighbor.
The k-th block in send buffer is sent to the k-th neighboring process and the [-th block in
the receive buffer is received from the [-th neighbor.

MPI_NEIGHBOR_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor (non-negative
integer)

IN sendtype data type of send buffer elements (handle)

ouT recvbuf starting address of receive buffer (choice)

IN recvcount number of elements received from each neighbor (non-

negative integer)
IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_alltoall(void* sendbuf, int sendcount, MPI_Datatype
sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Comm comm)

MPI_NEIGHBOR_ALLTOALL (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, COMM, IERROR)
<type> SENDBUF (%), RECVBUF (*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6 on page 24. If comm is a distributed graph
communicator, the outcome is as if each process executed sends to each of its outgoing
neighbors and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count (comm,&indegree,&outdegree,&weighted) ;
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int *srcs=(int*)malloc(indegree*sizeof (int));

int *dsts=(int*)malloc(outdegree*sizeof (int));
MPI_Dist_graph_neighbors(comm,indegree,srcs,outdegree,dsts,MPI_UNWEIGHTED) ;
int k,1;

for(k=0; k<outdegree; ++k)
MPI_TIsend(sendbuf+k*sendcount*extent (sendtype) ,sendcount,sendtype,
dstslk],...);

for(1=0; 1l<indegree; ++1)
MPI_Irecv(recvbuf+l*recvcount*extent(recvtype),recvcount,recvtype,
srcs[1],...);

MPI_WaitallC(...)

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at any other process. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of communicating processes. Distinct type maps between sender and receiver are
still allowed.

The “in place” option is not meaningful for this operation.

All arguments are significant on all processes and the argument
comm must have identical values on all processes.

The vector variant of MPI_NEIGHBOR_ALLTOALL allows sending/receiving different
numbers of elements to and from each neighbor.
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MPI_NEIGHBOR_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
rdispls, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length outdegree) speci-
fying the number of elements to send to each neighbor

IN sdispls integer array (of length outdegree). Entry j specifies
the displacement (relative to sendbuf) from which to
send the outgoing data to neighbor j

IN sendtype data type of send buffer elements (handle)
ouT recvbuf starting address of receive buffer (choice)
IN recvcounts non-negative integer array (of length indegree) spec-

ifying the number of elements that can are received
from each neighbor

IN rdispls integer array (of length indegree). Entry i specifies
the displacement (relative to recvbuf) at which to place
the incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_alltoallv(void* sendbuf, int sendcounts[], int sdisplsl[],
MPI_Datatype sendtype, void* recvbuf, int recvcounts[], int
rdispls[], MPI_Datatype recvtype, MPI_Comm comm)

MPI_NEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF,
RECVCOUNTS, RDISPLS, RECVTYPE, COMM, IERROR)
<type> SENDBUF(*), RECVBUF (*)
INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),
RECVTYPE, COMM, IERROR

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6 on page 24. If comm is a distributed graph
communicator, the outcome is as if each process executed sends to each of its outgoing
neighbors and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count (comm,&indegree,&outdegree,&weighted) ;

int *srcs=(int*)malloc(indegree*sizeof (int));

int *dsts=(int*)malloc(outdegree*sizeof (int));
MPI_Dist_graph_neighbors(comm,indegree,srcs,outdegree,dsts,MPI_UNWEIGHTED) ;
int k,1;

for(k=0; k<outdegree; ++k)
MPI_Isend(sendbuf+sdispls[k]*extent (sendtype) ,sendcounts[k],sendtype,
dsts[k]l,...);

for(1=0; 1l<indegree; ++1)
MPI_Irecv(recvbuf+rdispls[l]*extent(recvtype),recvcounts[l],recvtype,
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srcs[1],...);

MPI_Waitall(...)

The type signature associated with sendcounts[k], sendtype with dsts[k]==j at pro-
cess i must be equal to the type signature associated with recvcounts[1], recvtype with
srcs[1]==1i at process j. This implies that the amount of data sent must be equal to the
amount of data received, pairwise between every pair of communicating processes. Distinct
type maps between sender and receiver are still allowed. The data in the sendbuf beginning
at offset sdispls[k] elements (in terms of the sendtype) is sent to the k-th outgoing neighbor.
The data received from the 1-th incoming neighbor is placed into recvbuf beginning at offset
rdispls[1] elements (in terms of the recvtype).

The “in place” option is not meaningful for this operation.

All arguments are significant on all processes and the argument
comm must have identical values on all processes.

MPI_NEIGHBOR_ALLTOALLW allows one to send and receive with different datatypes
to and from each neighbor.

MPI_NEIGHBOR_ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts,
rdispls, recvtypes, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length outdegree) speci-
fying the number of elements to send to each neighbor

IN sdispls integer array (of length outdegree). Entry j specifies
the displacement in bytes (relative to sendbuf) from
which to take the outgoing data destined for neighbor
j (array of integers)

IN sendtypes array of datatypes (of length outdegree). Entry j spec-
ifies the type of data to send to neighbor j (array of
handles)

ouT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree) spec-

ifying the number of elements that can are received
from each neighbor

IN rdispls integer array (of length indegree). Entry i specifies
the displacement in bytes (relative to recvbuf) at which
to place the incoming data from neighbor i (array of

integers)

IN recvtypes array of datatypes (of length indegree). Entry i spec-
ifies the type of data received from neighbor i (array
of handles)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_alltoallw(void* sendbuf, int sendcounts[], int sdisplsl[],
MPI_Datatype sendtypes[], void* recvbuf, int recvcounts[], int
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rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm)

MPI_NEIGHBOR_ALLTOALLW (SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,
RECVCOUNTS, RDISPLS, RECVTYPES, COMM, IERROR)
<type> SENDBUF (%), RECVBUF (*)
INTEGER SENDCOUNTS (%), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(x),
RDISPLS(*), RECVTYPES(*), COMM, IERROR

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6 on page 24. If comm is a distributed graph
communicator, the outcome is as if each process executed sends to each of its outgoing
neighbors and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count (comm,&indegree,&outdegree,&weighted) ;

int *srcs=(int*)malloc(indegree*sizeof (int));

int *dsts=(int*)malloc(outdegree*sizeof (int));
MPI_Dist_graph_neighbors(comm,indegree,srcs,outdegree,dsts,MPI_UNWEIGHTED) ;
int k,1;

for(k=0; k<outdegree; ++k)
MPI_Isend(sendbuf+sdispls[k],sendcounts([k], sendtypes[k],dsts(k],...);

for(1=0; l<indegree; ++1)
MPI_Irecv(recvbuf+rdispls[l],recvcounts[1l], recvtypes[l],srcs([1l],...);

MPI_Waitall(...)

The type signature associated with sendcounts[k], sendtypes[k] with dsts[k]==j at
process i must be equal to the type signature associated with recvcounts[1], recvtypes[1]
with srcs[1]==i at process j. This implies that the amount of data sent must be equal
to the amount of data received, pairwise between every pair of communicating processes.
Distinct type maps between sender and receiver are still allowed.

The “in place” option is not meaningful for this operation.

All arguments are significant on all processes and the argument
comm must have identical values on all processes.

7.6.3 Neighborhood Reduction Operations

In some applications, each process might require the sum of a value of all its neighbors.
For this, MPI offers the neighborhood reduction call. MPI_Neighbor_reduce acts like an
MPI_Reduce with one communicator per process in which the owning process is rank 0
and all other processes are the incoming neighbors of rank 0 (in the order returned by the
neighborhood query function). Similar restrictions as for MPI_Reduce apply.
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MPI_NEIGHBOR_REDUCE(sendbuf, recvbuf, count, datatype, op, comm)

IN
ouT

sendbuf
recvbuf

count

datatype
op

comm

starting address of send buffer (choice)
starting address of receive buffer (choice)

number of elements in all buffers (non-negative inte-
ger)

data type of all buffer elements (handle)

reduce operation (handle)

communicator with topology structure (handle)

int MPI_Neighbor_reduce(void* sendbuf, void* recvbuf, int count,
MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

MPI_NEIGHBOR_REDUCE (SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF (%), RECVBUF (%)

INTEGER COUNT, DATATYPE, RECVCOUNT, 0P, COMM, IERROR

Processes might contribute to multiple different reductions in different neighborhoods.
If not all reduction neighborhoods have the same number of elements, the vector variant
MPI_NEIGHBOR_REDUCEV can be used to specify the correct size for each neighborhood.

MPI_NEIGHBOR_REDUCEV((sendbuf, sendcounts, displs, datatype, recvbuf, recvcount, op,

comm)

sendbuf

sendcounts

displs

datatype

recvbuf

recvcount

op

comm

starting address of send buffer (choice)

non-negative integer array (of length outdegree) speci-
fying the number of elements to send to each processor

integer array (of length outdegree). Entry j specifies
the displacement (relative to sendbuf) from which to
take the outgoing data destined for process j

data type of send buffer elements (handle)
starting address of receive buffer (choice)

number of elements received from any process (non-

negative integer)
reduce operation (handle)

communicator with topology structure (handle)

int MPI_Neighbor_reducev(void* sendbuf, int sendcounts, int displs[],
MPI_Datatype datatype, void* recvbuf, int recvcount, MPI_Op

op, MPI_Comm comm)

MPI_NEIGHBOR_REDUCEV (SENDBUF, SENDCOUNTS, DISPLS, DATATYPE, RECVBUF,
RECVCOUNT, OP, COMM, IERROR)

<type> SENDBUF (%), RECVBUF (*)

INTEGER SENDCOUNTS(*), DISPLS(*), DATATYPE, RECVCOUNT, 0P, COMM, IERROR
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7.7 Nonblocking Neighborhood Communication on Process Topologies 1

2
Nonblocking variants of the neighborhood collective operations allow relaxed synchroniza- 3
tion and overlapping of computation and communication. The semantics are similar to 4
nonblocking collective operations as described in Section ?7. 5

6
7.7.1 Nonblocking Neighborhood Gather 7

MPI_INEIGHBOR_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, 10

comm, request) 1
12

IN sendbuf starting address of send buffer (choice) .
IN sendcount number of elements sent to each neighbor (non-negative 14
integer) 15

IN sendtype data type of send buffer elements (handle) 16
17

ouT recvbuf starting address of receive buffer (choice) "
IN recvcount number of elements received from each neighbor (non- 19
negative integer) 20

IN recvtype data type of receive buffer elements (handle) 21
22

IN comm communicator with topology structure (handle) ”s
ouT request communication request (handle) 24
25

int MPI_Ineighbor_allgather(void* sendbuf, int sendcount, MPI_Datatype 26
sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype, 27

MPI_Comm comm, MPI_Request *request) 28

29

MPI_INEIGHBOR_ALLGATHER (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, COMM, REQUEST, IERROR)
<type> SENDBUF (*), RECVBUF (%)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

30
31
32
33
This call starts a nonblocking variant of MPI_NEIGHBOR_ALLGATHER. 34
35
36
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MPI_INEIGHBOR_ALLGATHERV((sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,

recvtype, comm, request)

IN

IN
IN
ouT

sendbuf

sendcount

sendtype
recvbuf

recvcounts

displs

recvtype
comm

request

starting address of send buffer (choice)

number of elements sent to each neighbor (non-negative
integer)

data type of send buffer elements (handle)
starting address of receive buffer (choice)

non-negative integer array (of length indegree) con-
taining the number of elements that are received from
each neighbor

integer array (of length indegree). Entry i specifies
the displacement (relative to recvbuf) at which to place
the incoming data from neighbor i

data type of receive buffer elements (handle)
communicator with topology structure (handle)

communication request (handle)

int MPI_Ineighbor_allgatherv(void* sendbuf, int sendcount, MPI_Datatype
sendtype, void* recvbuf, int recvcounts[], int displs[],
MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

MPI_INEIGHBOR_ALLGATHERV (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,
DISPLS, RECVIYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF (%)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

REQUEST,

TERROR

This call starts a nonblocking variant of MPI_NEIGHBOR_ALLGATHERYV.
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7.7.2 Nonblocking Neighborhood Alltoall 1

MPI_INEIGHBOR_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, *

request) 5
6

IN sendbuf starting address of send buffer (choice) .,
IN sendcount number of elements sent to each neighbor (non-negative 8
integer) 9

IN sendtype data type of send buffer elements (handle) 10

11

ouT recvbuf starting address of receive buffer (choice) i,
IN recvcount number of elements received from each neighbor (non- 13
negative integer) 14

IN recvtype data type of receive buffer elements (handle) 15
16

IN comm communicator with topology structure (handle) .
ouT request communication request (handle) 18
19

int MPI_Ineighbor_alltoall(void* sendbuf, int sendcount, MPI_Datatype 20
sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype, 21

MPI_Comm comm, MPI_Request *request) 22

23

MPI_INEIGHBOR_ALLTOALL (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, COMM, REQUEST, IERROR)
<type> SENDBUF (%), RECVBUF (*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

24

26
27
This call starts a nonblocking variant of MPI_NEIGHBOR_ALLTOALL. 28
29
30
31
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MPI_INEIGHBOR_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,

rdispls, recvtype, comm, request)

IN sendbuf

IN sendcounts
IN sdispls

IN sendtype
ouT recvbuf

IN recvcounts
IN rdispls

IN recvtype

IN comm
ouT request

starting address of send buffer (choice)

non-negative integer array (of length outdegree) speci-
fying the number of elements to send to each neighbor

integer array (of length outdegree). Entry j specifies
the displacement (relative to sendbuf) from which send
the outgoing data to neighbor j

data type of send buffer elements (handle)
starting address of receive buffer (choice)

non-negative integer array (of length indegree) spec-
ifying the number of elements that can are received
from each neighbor

integer array (of length indegree). Entry i specifies
the displacement (relative to recvbuf) at which to place
the incoming data from neighbor i

data type of receive buffer elements (handle)
communicator with topology structure (handle)

communication request (handle)

int MPI_Ineighbor_alltoallv(void* sendbuf, int sendcounts[], int sdisplsl[],
MPI_Datatype sendtype, void* recvbuf, int recvcounts[], int
rdispls[], MPI_Datatype recvtype, MPI_Comm comm, MPI_Request

*request)

MPI_INEIGHBOR_ALLTOALLV (SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF,
RECVCOUNTS, RDISPLS, RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF (*), RECVBUF (%)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, REQUEST,

IERROR

This call starts a nonblocking variant of MPI_NEIGHBOR_ALLTOALLV.
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MPI_INEIGHBOR_ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts,

rdispls, recvtypes, comm, request)

ouT

sendbuf

sendcounts

sdispls

sendtypes

recvbuf

recvcounts

rdispls

recvtypes

comm

request

starting address of send buffer (choice)

non-negative integer array (of length outdegree) speci-
fying the number of elements to send to each neighbor

integer array (of length outdegree). Entry j specifies
the displacement in bytes (relative to sendbuf) from
which to take the outgoing data destined for neighbor
j (array of integers)

array of datatypes (of length outdegree). Entry j spec-
ifies the type of data to send to neighbor j (array of
handles)

starting address of receive buffer (choice)

non-negative integer array (of length indegree) spec-
ifying the number of elements that can are received
from each neighbor

integer array (of length indegree). Entry i specifies
the displacement in bytes (relative to recvbuf) at which
to place the incoming data from neighbor i (array of
integers)

array of datatypes (of length indegree). Entry i spec-
ifies the type of data received from neighbor i (array
of handles)

communicator with topology structure (handle)

communication request (handle)

int MPI_Ineighbor_alltoallw(void* sendbuf, int sendcounts[], int sdispls[],
MPI_Datatype sendtypes[], void* recvbuf, int recvcounts[], int
rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm,

MPI_Request *request)

MPI_INEIGHBOR_ALLTOALLW (SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,
RECVCOUNTS, RDISPLS, RECVTYPES, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF (%)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),
RDISPLS(*), RECVIYPES(*), COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_NEIGHBOR_ALLTOALLW.
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7.7.3 Nonblocking Neighborhood Reductions

MPI_INEIGHBOR_REDUCE(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, op,

comm, request)

IN sendbuf
IN sendcount
IN sendtype
ouT recvbuf
IN recvcount
IN recvtype
IN op

IN comm
ouT request

starting address of send buffer (choice)

number of elements sent to each process (non-negative
integer)

data type of send buffer elements (handle)
starting address of receive buffer (choice)

number of elements received from any process (non-
negative integer)

data type of receive buffer elements (handle)
reduce operation (handle)
communicator with topology structure (handle)

communication request (handle)

int MPI_Ineighbor_reduce(void* sendbuf, int sendcount, MPI_Datatype
sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype,
MPI_Op op, MPI_Comm comm, MPI_Request *request)

MPI_INEIGHBOR_REDUCE (SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,
RECVTYPE, 0P, COMM, IERROR)

<type> SENDBUF (%), RECVBUF (%)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, 0P, COMM, REQUEST,

TERROR

This call starts a nonblocking variant of MPI_NEIGHBOR_REDUCE.
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MPI_INEIGHBOR_REDUCEV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recv-
type, op, comm)
IN sendbuf starting address of send buffer (choice)
IN sendcounts non-negative integer array (of length outdegree) speci-
fying the number of elements to send to each processor

IN displs integer array (of length outdegree). Entry j specifies
the displacement (relative to sendbuf) from which to
take the outgoing data destined for process j

IN sendtype data type of send buffer elements (handle)
ouT recvbuf starting address of receive buffer (choice)
IN recvcount number of elements received from any process (non-

negative integer)

IN recvtype data type of receive buffer elements (handle)

IN op reduce operation (handle)

IN comm communicator with topology structure (handle)
ouT request communication request (handle)

int MPI_Ineighbor_reducev(void* sendbuf, int *sendcounts, int *displs,
MPI_Datatype sendtype, void* recvbuf, int recvcount,
MPI_Datatype recvtype, MPI_Op op, MPI_Comm comm,
MPI_Request *request)

MPI_INEIGHBOR_REDUCEV (SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF,
RECVCOUNT, RECVTYPE, OP, COMM, REQUEST, IERROR)
<type> SENDBUF (*), RECVBUF ()
INTEGER SENDCOUNTS(x), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, OP,
COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_NEIGHBOR_REDUCEV.

7.8 An Application Example

Example 7.9 The example in Figures 7.1-7.3 shows how the grid definition and inquiry
functions can be used in an application program. A partial differential equation, for instance
the Poisson equation, is to be solved on a rectangular domain. First, the processes organize
themselves in a two-dimensional structure. Each process then inquires about the ranks of
its neighbors in the four directions (up, down, right, left). The numerical problem is solved
by an iterative method, the details of which are hidden in the subroutine relax.

In each relaxation step each process computes new values for the solution grid function
at the points u(1:100,1:100) owned by the process. Then the values at inter-process
boundaries have to be exchanged with neighboring processes. For example, the newly
calculated values in u(1,1:100) must be sent into the halo cells u(101,1:100) of the
left-hand neighbor with coordinates (own_coord(1)-1,own_coord(2))
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INTEGER ndims, num_neigh
LOGICAL reorder
PARAMETER (ndims=2, num_neigh=4, reorder=.true.)
INTEGER comm, comm_cart, dims(ndims), ierr
INTEGER neigh_rank(num_neigh), own_coords(ndims), i, j
LOGICAL periods(ndims)
REAL u(0:101,0:101), £(0:101,0:101)
DATA dims / ndims * 0 /
comm = MPI_COMM_WORLD
! Set process grid size and periodicity
CALL MPI_DIMS_CREATE(comm, ndims, dims,ierr)
periods(1) .TRUE.
periods(2) .TRUE.
! Create a grid structure in WORLD group and inquire about own position
CALL MPI_CART_CREATE (comm, ndims, dims, periods, reorder,
comm_cart,ierr)
CALL MPI_CART_GET (comm_cart, ndims, dims, periods, own_coords,ierr)
i = own_coords(1)
j = own_coords(2)
! Look up the ranks for the neighbors. Own process coordinates are (i,j).
! Neighbors are (i-1,j), (i+1,j), (i,j-1), (i,j+1) modulo (dims(1),dims(2))
CALL MPI_CART_SHIFT (comm_cart, 0,1, neigh rank(l),neigh _rank(2), ierr)
CALL MPI_CART_SHIFT (comm_cart, 1,1, neigh rank(3),neigh_rank(4), ierr)
! Initialize the grid functions and start the iteration
CALL init (u, £)
DO it=1,100
CALL relax (u, f)
! Exchange data with neighbor processes
CALL exchange (u, comm_cart, neigh_rank, num_neigh)
END DO
CALL output (u)

Figure 7.1: Set-up of process structure for two-dimensional parallel Poisson solver.
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SUBROUTINE exchange (u, comm_cart, neigh_rank, num_neigh)
REAL u(0:101,0:101)

INTEGER comm_cart, num_neigh, neigh_rank(num_neigh)

REAL sndbuf (100,num_neigh), rcvbuf (100,num_neigh)

INTEGER ierr

sndbuf (1:100,1) = u( 1,1:100)
sndbuf (1:100,2) = u(100,1:100)
sndbuf (1:100,3) = u(1:100, 1)

sndbuf (1:100,4) = u(1:100,100)

CALL MPI_NEIGHBOR_ALLTOALL (sndbuf, 100, MPI_REAL, rcvbuf, 100, MPI_REAL, &
comm_cart, ierr)

I instead of

I DO i=1,num_neigh

! CALL MPI_IRECV(rcvbuf(1,i),100,MPI_REAL,neigh_rank(i),...,rq(2%i-1),ierr)

| CALL MPI_ISEND(sndbuf(1,i),100,MPI_REAL,neigh_rank(i),...,rq(2*i ),ierr)

! END DO

! CALL MPI_WAITALL (2*num_neigh, rq, statuses, ierr)

u( 0,1:100) = rcvbuf(1:100,1)
u(101,1:100) = rcvbuf(1:100,2)
u(1:100, 0) = rcvbuf(1:100,3)
u(1:100,101) = rcvbuf(1:100,4)
END

Figure 7.2: Communication routine with local data copying and sparse neighborhood all-
to-all.
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SUBROUTINE exchange (u, comm_cart, neigh_rank, num_neigh)

REAL u(0:101,0:101)

INTEGER comm_cart, num_neigh, neigh_rank(num_neigh)

INTEGER sndcounts(num_neigh), sdispls(num_neigh), sndtypes(num_neigh)
INTEGER rcvcounts(num_neigh), rdispls(num_neigh), rcvtypes(num_neigh)
INTEGER (KIND=MPI_ADDRESS_KIND) 1lb, sizeofreal

INTEGER type_vec, i, ierr

! The following initialization need to be done only once

! before the first call of exchange.

CALL MPI_TYPE_EXTENT(MPI_REAL, 1b, sizeofreal, ierr)

CALL MPI_TYPE_VECTOR (100, 1, 102, MPI_REAL, type_vec, ierr)

CALL MPI_TYPE_COMMIT (type_vec, ierr)

sndtypes(1) = type_vec

sndtypes(2) = type_vec
sndtypes(3) = MPI_REAL
sndtypes(4) = MPI_REAL
DO i=1,num_neigh

sndcounts(i) = 100

rcvcounts(i) = 100

rcvtypes(i) = sndtypes(i)
END DO
sdispls(1) = ( 1 + 1%102) * sizeofreal ! first element of u( 1,1:100)
sdispls(2) = (100 + 1%102) * sizeofreal ! first element of u(100,1:100)
sdispls(3) = ( 1 + 1%102) * sizeofreal ! first element of u(1:100, 1)
sdispls(4) = ( 1 + 100%102) * sizeofreal ! first element of u(1:100,100)
rdispls(1) = ( 0 + 1%102) * sizeofreal ! first element of u( 0,1:100)
rdispls(2) = (101 + 1%102) * sizeofreal I first element of u(101,1:100)
rdispls(3) = ( 1 + 0%102) * sizeofreal ! first element of u(1:100, 0)
rdispls(4) = ( 1 + 101%102) * sizeofreal I first element of u(1:100,101)

! the following communication has to be done in each call of exchange
CALL MPI_NEIGHBOR_ALLTOALLW (u, sndcounts, sdispls, sndtypes,
u, rcvcounts, rdispls, rcvtypes, comm_cart, ierr)

! The following finalizing need to be done only once
! after the last call of exchange.

CALL MPI_TYPE_FREE (type_vec, ierr)

END

Figure 7.3: Communication routine with sparse neighborhood all-to-all-w and without local
data copying.
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