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About the Speakers

 Pavan Balaji: Computer Scientist, MCS, Argonne

– Group Lead: programming models and runtime systems

– Leads the MPICH implementation of MPI

– Chairs the Hybrid working group for MPI-3 and MPI-4

– Member of various other working groups including RMA, contexts and 

communicators, etc., for MPI-3 and MPI-4

 Torsten Hoefler: Assistant Professor, ETH, Zurich

– Chairs the Collectives working group for MPI-3 and MPI-4

– Member of various other working groups including RMA, hybrid programming, 

etc., for MPI-3 and MPI-4

 We are deeply involved in MPI standardization (in the MPI Forum) and in 

MPI implementation
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What this tutorial will cover

 Some advanced topics in MPI

– Not a complete set of MPI features

– Will not include all details of each feature

– Idea is to give you a feel of the features so you can start using them in your 
applications

 One-sided Communication (Remote Memory Access)

– MPI-2 and MPI-3

 Nonblocking Collective Communication

– MPI-3

 Hybrid Programming with Threads and Shared Memory

– MPI-2 and MPI-3

 Topology-aware Communication

– MPI-1 and MPI-2.2

3Advanced MPI, ISC (06/19/2016)



What is MPI?

 MPI: Message Passing Interface

– The MPI Forum organized in 1992 with broad participation by:

• Vendors: IBM, Intel, TMC, SGI, Convex, Meiko

• Portability library writers: PVM, p4

• Users: application scientists and library writers

• MPI-1 finished in 18 months

– Incorporates the best ideas in a “standard” way

• Each function takes fixed arguments

• Each function has fixed semantics

– Standardizes what the MPI implementation provides and what the 

application can and cannot expect

– Each system can implement it differently as long as the semantics match

 MPI is not…

– a language or compiler specification

– a specific implementation or product
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Following MPI Standards

 MPI-2 was released in 1997

– Several additional features including MPI + threads, MPI-I/O, remote 

memory access functionality and many others

 MPI-2.1 (2008) and MPI-2.2 (2009) were recently released 

with some corrections to the standard and small features

 MPI-3 (2012) added several new features to MPI

 MPI-3.1 (2015) added minor corrections and features

 The Standard itself:

– at http://www.mpi-forum.org

– All MPI official releases, in both postscript and HTML

 Other information on Web:

– at http://www.mcs.anl.gov/mpi

– pointers to lots of material including tutorials, a FAQ, other MPI pages
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Status of MPI-3.1 Implementations

MPICH MVAPICH
Open
MPI

Cray 
MPI

Tianhe
MPI

Intel 
MPI

IBM BG/Q 
MPI 1

IBM PE 
MPICH 2

IBM 
Platform

SGI 
MPI

Fujitsu 
MPI

MS 
MPI

MPC
NEC 
MPI

NBC ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ (*) ✔ ✔

Nbrhood
collectives

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ ✔ ✔

RMA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ Q2’17 ✔

Shared 
memory

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ * ✔

Tools 
Interface

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ * Q4’16 ✔

Comm-creat
group

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✘ * ✔

F08 Bindings ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✘ ✘ ✔ ✘ ✘ Q2’16 ✔

New 
Datatypes

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ ✔ ✔

Large Counts ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ Q2’16 ✔

Matched 
Probe

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔ ✔ Q2’16 ✔

NBC I/O ✔ Q3‘16 ✔ ✔ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘ Q4’16 ✔

1 Open Source but unsupported 2 No MPI_T variables exposed * Under development (*) Partly done

Release dates are estimates and are subject to change at any time.

“✘” indicates no publicly announced plan to implement/support that feature.

Platform-specific restrictions might apply to the supported features
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Latest MPI 3.1 Standard in Book Form

Available from amazon.com

http://www.amazon.com/dp/B015CJ42CU/
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New Tutorial Books on MPI

8

Basic MPI Advanced MPI, including MPI-3
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New Book on Parallel Programming Models

Edited by Pavan Balaji

• MPI: W. Gropp and R. Thakur

• GASNet: P. Hargrove

• OpenSHMEM: J. Kuehn and S. Poole

• UPC: K. Yelick and Y. Zheng

• Global Arrays: S. Krishnamoorthy, J. Daily, A. Vishnu, 

and B. Palmer

• Chapel: B. Chamberlain

• Charm++: L. Kale, N. Jain, and J. Lifflander

• ADLB: E. Lusk, R. Butler, and S. Pieper

• Scioto: J. Dinan

• SWIFT: T. Armstrong, J. M. Wozniak, M. Wilde, and I. 

Foster

• CnC: K. Knobe, M. Burke, and F. Schlimbach

• OpenMP: B. Chapman, D. Eachempati, and S. 

Chandrasekaran

• Cilk Plus: A. Robison and C. Leiserson

• Intel TBB: A. Kukanov

• CUDA: W. Hwu and D. Kirk

• OpenCL: T. Mattson
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Important considerations while using MPI

 All parallelism is explicit: the programmer is responsible for 

correctly identifying parallelism and implementing parallel 

algorithms using MPI constructs
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Parallel Sort using MPI Send/Recv

8 23 19 67 45 35 1 24 13 30 3 5

8 19 23 35 45 67 1 3 5 13 24 30

Rank 0 Rank 1

8 19 23 35 3045 67 1 3 5 13 24

O(N log N)

1 3 5 8 6713 19 23 24 30 35 45

Rank 0

Rank 0

Rank 0
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#include <mpi.h>

#include <stdio.h>

int main(int argc, char ** argv)

{

int rank, a[1000], b[500];

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) {

MPI_Send(&a[500], 500, MPI_INT, 1, 0, MPI_COMM_WORLD);

sort(a, 500);

MPI_Recv(b, 500, MPI_INT, 1, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

/* Serial: Merge array b and sorted part of array a */

}

else if (rank == 1) {

MPI_Recv(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

sort(b, 500);

MPI_Send(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD);

}

MPI_Finalize(); return 0;

}

Parallel Sort using MPI Send/Recv (contd.)
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A Non-Blocking communication example

P0

P1

Blocking 
Communication

P0

P1

Non-blocking 
Communication
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int main(int argc, char ** argv)

{

[...snip...]

if (rank == 0) {

for (i=0; i< 100; i++) {

/* Compute each data element and send it out */

data[i] = compute(i);

MPI_Isend(&data[i], 1, MPI_INT, 1, 0, MPI_COMM_WORLD,

&request[i]);

}

MPI_Waitall(100, request, MPI_STATUSES_IGNORE)

}

else if (rank == 1){

for (i = 0; i < 100; i++)

MPI_Recv(&data[i], 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

}

[...snip...]

}

A Non-Blocking communication example

Advanced MPI, ISC (06/19/2016) 14



MPI Collective Routines

 Many Routines:  MPI_ALLGATHER, MPI_ALLGATHERV, 

MPI_ALLREDUCE, MPI_ALLTOALL, MPI_ALLTOALLV, 

MPI_BCAST, MPI_GATHER, MPI_GATHERV, MPI_REDUCE, 

MPI_REDUCESCATTER, MPI_SCAN, MPI_SCATTER, 

MPI_SCATTERV

 “All” versions deliver results to all participating processes

 “V” versions (stands for vector) allow the hunks to have different 

sizes

 MPI_ALLREDUCE, MPI_REDUCE, MPI_REDUCESCATTER, and 

MPI_SCAN take both built-in and user-defined combiner functions
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MPI Built-in Collective Computation Operations

 MPI_MAX

 MPI_MIN

 MPI_PROD

 MPI_SUM

 MPI_LAND

 MPI_LOR

 MPI_LXOR

 MPI_BAND

 MPI_BOR

 MPI_BXOR

 MPI_MAXLOC

 MPI_MINLOC

Maximum

Minimum

Product

Sum

Logical and

Logical or

Logical exclusive or

Bitwise and

Bitwise or

Bitwise exclusive or

Maximum and location

Minimum and location
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Introduction to Datatypes in MPI

 Datatypes allow to (de)serialize arbitrary data layouts into a 

message stream

– Networks provide serial channels

– Same for block devices and I/O

 Several constructors allow arbitrary layouts

– Recursive specification possible

– Declarative specification of data-layout

• “what” and not “how”, leaves optimization to implementation (many

unexplored possibilities!)

– Choosing the right constructors is not always simple

17Advanced MPI, ISC (06/19/2016)



Derived Datatype Example
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Advanced Topics: One-sided Communication



One-sided Communication

 The basic idea of one-sided communication models is to 

decouple data movement with process synchronization

– Should be able to move data without requiring that the remote 

process synchronize

– Each process exposes a part of its memory to other processes

– Other processes can directly read from or write to this memory

Process 1 Process 2 Process 3

Private

Memory

Private

Memory

Private

Memory

Process 0

Private

Memory

Remotely

Accessible

Memory

Remotely

Accessible

Memory

Remotely

Accessible 

Memory

Remotely

Accessible 

Memory

Global 
Address 

Space

Private

Memory

Private

Memory

Private

Memory

Private

Memory
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Two-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory

Segment

Processor Processor

Send Recv

Memory

Segment

Memory

Segment

Memory

Segment

Memory

Segment
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One-sided Communication Example

MPI implementation

Memory Memory

MPI implementation

Send Recv

Memory

Segment

Processor Processor

Send Recv

Memory

Segment

Memory

Segment

Memory

Segment
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Comparing One-sided and Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D
E
L
A
Y

Even the 
sending 

process is 
delayed

Process 0 Process 1

PUT(data) D
E
L
A
Y

Delay in 
process 1 
does not 

affect 
process 0

GET(data)
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What we need to know in MPI RMA

 How to create remote accessible memory?

 Reading, Writing and Updating remote memory

 Data Synchronization

 Memory Model

24Advanced MPI, ISC (06/19/2016)



Creating Public Memory

 Any memory used by a process is, by default, only locally 

accessible

– X = malloc(100);

 Once the memory is allocated, the user has to make an 

explicit MPI call to declare a memory region as remotely 

accessible

– MPI terminology for remotely accessible memory is a “window”

– A group of processes collectively create a “window”

 Once a memory region is declared as remotely accessible, all 

processes in the window can read/write data to this memory 

without explicitly synchronizing with the target process
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Private
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Private

Memory
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Private

Memory

Private

Memory

Private

Memory

Private

Memory

Private

Memory
window window window window



Window creation models

 Four models exist

– MPI_WIN_ALLOCATE

• You want to create a buffer and directly make it remotely accessible

– MPI_WIN_CREATE

• You already have an allocated buffer that you would like to make 

remotely accessible

– MPI_WIN_CREATE_DYNAMIC

• You don’t have a buffer yet, but will have one in the future

• You may want to dynamically add/remove buffers to/from the window

– MPI_WIN_ALLOCATE_SHARED

• You want multiple processes on the same node share a buffer
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MPI_WIN_ALLOCATE

 Create a remotely accessible memory region in an RMA window

– Only data exposed in a window can be accessed with RMA ops.

 Arguments:

– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - info argument (handle)

– comm - communicator (handle)

– baseptr - pointer to exposed local data

– win            - window (handle)
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MPI_Win_allocate(MPI_Aint size, int disp_unit,

MPI_Info info, MPI_Comm comm, void *baseptr,

MPI_Win *win)



Example with MPI_WIN_ALLOCATE

int main(int argc, char ** argv)

{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* collectively create remote accessible memory in a window */

MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,

MPI_COMM_WORLD, &a, &win);

/* Array ‘a’ is now accessible from all processes in

* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Finalize(); return 0;

}
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MPI_WIN_CREATE

 Expose a region of memory in an RMA window

– Only data exposed in a window can be accessed with RMA ops.

 Arguments:

– base - pointer to local data to expose

– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - info argument (handle)

– comm - communicator (handle)

– win             - window (handle)
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MPI_Win_create(void *base, MPI_Aint size, 

int disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)



Example with MPI_WIN_CREATE
int main(int argc, char ** argv)

{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

/* create private memory */

MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);

/* use private memory like you normally would */

a[0] = 1;  a[1] = 2;

/* collectively declare memory as remotely accessible */

MPI_Win_create(a, 1000*sizeof(int), sizeof(int), 

MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* Array ‘a’ is now accessibly by all processes in

* MPI_COMM_WORLD */

MPI_Win_free(&win);

MPI_Free_mem(a);

MPI_Finalize(); return 0;

}
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MPI_WIN_CREATE_DYNAMIC

 Create an RMA window, to which data can later be attached

– Only data exposed in a window can be accessed with RMA ops

 Initially “empty”

– Application can dynamically attach/detach memory to this window by 

calling MPI_Win_attach/detach

– Application can access data on this window only after a memory 

region has been attached

 Window origin is MPI_BOTTOM

– Displacements are segment addresses relative to MPI_BOTTOM

– Must tell others the displacement after calling attach
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MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm,

MPI_Win *win)



Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)

{

int *a;    MPI_Win win;

MPI_Init(&argc, &argv);

MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

/* create private memory */

a = (int *) malloc(1000 * sizeof(int));

/* use private memory like you normally would */

a[0] = 1;  a[1] = 2;

/* locally declare memory as remotely accessible */

MPI_Win_attach(win, a, 1000*sizeof(int));

/* Array ‘a’ is now accessible from all processes */

/* undeclare remotely accessible memory */

MPI_Win_detach(win, a);  free(a);

MPI_Win_free(&win);

MPI_Finalize(); return 0;

}
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Data movement

 MPI provides ability to read, write and atomically modify data 

in remotely accessible memory regions

– MPI_PUT

– MPI_GET

– MPI_ACCUMULATE (atomic)

– MPI_GET_ACCUMULATE (atomic)

– MPI_COMPARE_AND_SWAP (atomic)

– MPI_FETCH_AND_OP (atomic)
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Data movement: Put

 Move data from origin, to target

 Separate data description triples for origin and target

34

Origin

MPI_Put(void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_dtype, MPI_Win win)
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Data movement: Get

 Move data to origin, from target

 Separate data description triples for origin and target

35

Origin

MPI_Get(const void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_dtype, MPI_Win win)
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Atomic Data Aggregation: Accumulate

 Atomic update operation, similar to a put

– Reduces origin and target data into target buffer using op argument as combiner

– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …

– Predefined ops only, no user-defined operations

 Different data layouts between

target/origin OK

– Basic type elements must match

 Op = MPI_REPLACE

– Implements f(a,b)=b

– Atomic PUT

36

MPI_Accumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_dtype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)
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Atomic Data Aggregation: Get Accumulate

 Atomic read-modify-write

– Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, MPI_NO_OP, …

– Predefined ops only

 Result stored in target buffer

 Original data stored in result buf

 Different data layouts between
target/origin OK

– Basic type elements must match

 Atomic get with MPI_NO_OP

 Atomic swap with MPI_REPLACE

37

MPI_Get_accumulate(const void *origin_addr,

int origin_count, MPI_Datatype origin_dtype, 

void *result_addr,int result_count,

MPI_Datatype result_dtype, int target_rank, 

MPI_Aint target_disp,int target_count, 

MPI_Datatype target_dype, MPI_Op op, MPI_Win win)
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Atomic Data Aggregation: CAS and FOP

 FOP: Simpler version of MPI_Get_accumulate

– All buffers share a single predefined datatype

– No count argument (it’s always 1)

– Simpler interface allows hardware optimization

 CAS: Atomic swap if target value is equal to compare value

38

MPI_Compare_and_swap(void *origin_addr, void *compare_addr,

void *result_addr, MPI_Datatype dtype, int target_rank,

MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(void *origin_addr, void *result_addr,

MPI_Datatype dtype, int target_rank,

MPI_Aint target_disp, MPI_Op op, MPI_Win win)
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Ordering of Operations in MPI RMA

 No guaranteed ordering for Put/Get operations

 Result of concurrent Puts to the same location undefined

 Result of Get concurrent Put/Accumulate undefined

– Can be garbage in both cases

 Result of concurrent accumulate operations to the same location 

are defined according to the order in which the occurred

– Atomic put: Accumulate with op = MPI_REPLACE

– Atomic get: Get_accumulate with op = MPI_NO_OP

 Accumulate operations from a given process are ordered by default

– User can tell the MPI implementation that (s)he does not require ordering 

as optimization hint

– You can ask for only the needed orderings: RAW (read-after-write), WAR, 

RAR, or WAW
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Examples with operation ordering

40

Process 0 Process 1

GET_ACC (y, x+=2, P1)

ACC (x+=1, P1) x += 2

x += 1y=2 

x = 2

PUT(x=2, P1)

GET(y, x, P1)

x = 2y=1

x = 1

PUT(x=1, P1)

PUT(x=2, P1)

x = 1

x = 0

x = 2

1. Concurrent Puts: undefined

2. Concurrent Get and 
Put/Accumulates: undefined

3. Concurrent Accumulate operations 
to the same location : ordering is 
guaranteed
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RMA Synchronization Models

 RMA data access model

– When is a process allowed to read/write remotely accessible memory?

– When is data written by process X is available for process Y to read?

– RMA synchronization models define these semantics

 Three synchronization models provided by MPI:

– Fence (active target)

– Post-start-complete-wait (generalized active target)

– Lock/Unlock (passive target)

 Data accesses occur within “epochs”

– Access epochs: contain a set of operations issued by an origin process

– Exposure epochs: enable remote processes to update a target’s window

– Epochs define ordering and completion semantics

– Synchronization models provide mechanisms for establishing epochs

• E.g., starting, ending, and synchronizing epochs
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Fence: Active Target Synchronization

 Collective synchronization model

 Starts and ends access and exposure 

epochs on all processes in the window

 All processes in group of “win” do an 

MPI_WIN_FENCE to open an epoch

 Everyone can issue PUT/GET operations 

to read/write data

 Everyone does an MPI_WIN_FENCE to 

close the epoch

 All operations complete at the second 

fence synchronization

42

Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)

Advanced MPI, ISC (06/19/2016)
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Implementing Stencil Computation with RMA Fence

43

Origin buffers

Target buffers

RMA window

PUT

P
U

T

PUT

P
U

T
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44

Code Example

 stencil_mpi_ddt_rma.c

 Use MPI_PUTs to move data, explicit receives are not needed

 Data location specified by MPI datatypes

 Manual packing of data no longer required
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PSCW: Generalized Active Target Synchronization

 Like FENCE, but origin and target specify 

who they communicate with

 Target: Exposure epoch

– Opened with MPI_Win_post

– Closed by MPI_Win_wait

 Origin: Access epoch

– Opened by MPI_Win_start

– Closed by MPI_Win_complete

 All synchronization operations may block, 

to enforce P-S/C-W ordering

– Processes can be both origins and targets

45

Start

Complete

Post

Wait

Target Origin

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win)

MPI_Win_complete/wait(MPI_Win win)
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Lock/Unlock: Passive Target Synchronization

 Passive mode: One-sided, asynchronous communication

– Target does not participate in communication operation

 Shared memory-like model

46

Active Target Mode Passive Target Mode

Lock

Unlock

Start

Complete

Post

Wait
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Passive Target Synchronization

 Lock/Unlock: Begin/end passive mode epoch

– Target process does not make a corresponding MPI call

– Can initiate multiple passive target epochs to different processes

– Concurrent epochs to same process not allowed (affects threads)

 Lock type

– SHARED: Other processes using shared can access concurrently

– EXCLUSIVE: No other processes can access concurrently

 Flush: Remotely complete RMA operations to the target process

– After completion, data can be read by target process or a different process

 Flush_local: Locally complete RMA operations to the target process

MPI_Win_lock(int locktype, int rank, int assert, MPI_Win win)
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MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_flush/flush_local(int rank, MPI_Win win)



Advanced Passive Target Synchronization

 Lock_all: Shared lock, passive target epoch to all other 

processes

– Expected usage is long-lived: lock_all, put/get, flush, …, unlock_all

 Flush_all – remotely complete RMA operations to all 

processes

 Flush_local_all – locally complete RMA operations to all 

processes

48

MPI_Win_lock_all(int assert, MPI_Win win)
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MPI_Win_unlock_all(MPI_Win win)

MPI_Win_flush_all/flush_local_all(MPI_Win win)



NWChem [1]

 High performance computational chemistry 
application suite

 Quantum level simulation of molecular 
systems
– Very expensive in computation and data 

movement, so is used for small systems

– Larger systems use molecular level simulations

 Composed of many simulation capabilities
– Molecular Electronic Structure

– Quantum Mechanics/Molecular Mechanics

– Pseudo potential Plane-Wave Electronic Structure

– Molecular Dynamics

 Very large code base
– 4M LOC; Total investment of ~1B $ to date

[1] M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, 
"NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations" Comput. Phys. Commun. 181, 
1477 (2010)

Water (H2O)21

Carbon C20

Advanced MPI, ISC (06/19/2016) 49



NWChem Communication Runtime

ARMCI  : Communication interface for RMA[3]

Global Arrays [2]

[2] http://hpc.pnl.gov/globalarrays
[3] http://hpc.pnl.gov/armci

ARMCI native ports

IB DMMAP
…

MPI RMA

ARMCI-MPI

Abstractions for distributed arrays

Global Address Space

Physically distributed to different processes 

Hidden from user

Applications

Irregularly  access large amount of remote 
memory regions
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Get-Compute-Update

 Typical Get-Compute-Update mode in GA programming

Perform DGEMM in local buffer 

for i in I blocks:

for j in J blocks:

for k in K blocks:

GET block a from A

GET block b from B

c += a * b   /*computing*/

end do 

ACC block c to C

NXTASK

end do

end do

Pseudo code

ACCUMULATE
block c

GET
block b

GET 
block a

All of the blocks are non-contiguous data

Mock figure showing 2D DGEMM with block-sparse 
computations.  In reality, NWChem uses 6D tensors.
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Code Example

 ga_mpi_ddt_rma.c

 Only synchronization from origin processes, no 

synchronization from target processes
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Which synchronization mode should I use, when?

 RMA communication has low overheads versus send/recv

– Two-sided: Matching, queuing, buffering, unexpected receives, etc…

– One-sided: No matching, no buffering, always ready to receive

– Utilize RDMA provided by high-speed interconnects (e.g. InfiniBand)

 Active mode: bulk synchronization

– E.g. ghost cell exchange

 Passive mode: asynchronous data movement

– Useful when dataset is large, requiring memory of multiple nodes

– Also, when data access and synchronization pattern is dynamic

– Common use case: distributed, shared arrays

 Passive target locking mode

– Lock/unlock – Useful when exclusive epochs are needed

– Lock_all/unlock_all – Useful when only shared epochs are needed
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MPI RMA Memory Model

 MPI-3 provides two memory models: 
separate and unified

 MPI-2: Separate Model

– Logical public and private copies

– MPI provides software coherence between 
window copies

– Extremely portable, to systems that don’t 
provide hardware coherence

 MPI-3: New Unified Model

– Single copy of the window

– System must provide coherence

– Superset of separate semantics

• E.g. allows concurrent local/remote access

– Provides access to full performance 
potential of hardware

54

Public
Copy

Private
Copy

Unified
Copy
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MPI RMA Memory Model (separate windows)

 Very portable, compatible with non-coherent memory systems

 Limits concurrent accesses to enable software coherence

Public
Copy

Private
Copy

Same source
Same epoch Diff. Sources

load store store

X
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MPI RMA Memory Model (unified windows)

 Allows concurrent local/remote accesses

 Concurrent, conflicting operations are allowed (not invalid)

– Outcome is not defined by MPI (defined by the hardware)

 Can enable better performance by reducing synchronization

56

Unified
Copy

Same source
Same epoch Diff. Sources

load store store

X
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MPI RMA Operation Compatibility (Separate)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL X X

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL X NOVL NOVL NOVL

Acc NOVL X NOVL NOVL OVL+NOVL

This matrix shows the compatibility of MPI-RMA operations when two or more 

processes access a window at the same target concurrently.

OVL – Overlapping operations permitted

NOVL – Nonoverlapping operations permitted

X – Combining these operations is OK, but data might be garbage
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MPI RMA Operation Compatibility (Unified)

Load Store Get Put Acc

Load OVL+NOVL OVL+NOVL OVL+NOVL NOVL NOVL

Store OVL+NOVL OVL+NOVL NOVL NOVL NOVL

Get OVL+NOVL NOVL OVL+NOVL NOVL NOVL

Put NOVL NOVL NOVL NOVL NOVL

Acc NOVL NOVL NOVL NOVL OVL+NOVL

This matrix shows the compatibility of MPI-RMA operations when two or more 

processes access a window at the same target concurrently.

OVL – Overlapping operations permitted

NOVL – Nonoverlapping operations permitted

58Advanced MPI, ISC (06/19/2016)



Advanced Topics: Nonblocking Collectives



 Nonblocking (send/recv) communication

– Deadlock avoidance

– Overlapping communication/computation

 Collective communication

– Collection of pre-defined optimized routines

  Nonblocking collective communication

– Combines both techniques (more than the sum of the parts )

– System noise/imbalance resiliency

– Semantic advantages
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Nonblocking Collective Communication

 Nonblocking variants of all collectives

– MPI_Ibcast(<bcast args>, MPI_Request *req);

 Semantics

– Function returns no matter what

– No guaranteed progress (quality of implementation)

– Usual completion calls (wait, test) + mixing

– Out-of order completion

 Restrictions

– No tags, in-order matching

– Send and vector buffers may not be updated during operation

– MPI_Cancel not supported

– No matching with blocking collectives

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI

61Advanced MPI, ISC (06/19/2016)



Nonblocking Collective Communication

 Semantic advantages

– Enable asynchronous progression (and manual)

• Software pipelining

– Decouple data transfer and synchronization

• Noise resiliency!

– Allow overlapping communicators

• See also neighborhood collectives

– Multiple outstanding operations at any time

• Enables pipelining window

Hoefler et al.: Implementation and Performance Analysis of Non-Blocking Collective Operations for MPI
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Nonblocking Collectives Overlap

 Software pipelining

– More complex parameters 

– Progression issues

– Not scale-invariant

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications
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A Non-Blocking Barrier?

 What can that be good for? Well, quite a bit!

 Semantics:

– MPI_Ibarrier() – calling process entered the barrier, no

synchronization happens

– Synchronization may happen asynchronously

– MPI_Test/Wait() – synchronization happens if necessary

 Uses: 

– Overlap barrier latency (small benefit)

– Use the split semantics! Processes notify non-collectively but 

synchronize collectively!
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A Semantics Example: DSDE

 Dynamic Sparse Data Exchange
– Dynamic: comm. pattern varies across iterations

– Sparse: number of neighbors is limited (O(log P))

– Data exchange: only senders know neighbors

 Main Problem: metadata
– Determine who wants to send how much

data to me 
(I must post receive and reserve memory)

OR:

– Use MPI semantics:

• Unknown sender (MPI_ANY_SOURCE)

• Unknown message size (MPI_PROBE)

• Reduces problem to counting the number

of neighbors 

• Allow faster implementation!

Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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Using Alltoall (PEX) 

 Based on Personalized Exchange (           )

– Processes exchange

metadata (sizes) 

about neighborhoods 

with all-to-all

– Processes post 

receives afterwards

– Most intuitive but 

least performance 

and scalability!

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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Reduce_scatter (PCX)

 Bases on Personalized Census (             )

– Processes exchange

metadata (counts) about 

neighborhoods with

reduce_scatter

– Receivers checks with

wildcard MPI_IPROBE

and receives messages

– Better than PEX but

non-deterministic!

T. Hoefler et al.:Scalable Communication Protocols for Dynamic Sparse Data Exchange
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MPI_Ibarrier (NBX)

 Complexity - census (barrier):   (                     )

– Combines metadata with actual transmission

– Point-to-point
synchronization

– Continue receiving
until barrier completes

– Processes start coll.
synch. (barrier) when
p2p phase ended

• barrier = distributed 
marker!

– Better than Alltoall,
reduce-scatter!

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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Parallel Breadth First Search

 On a clustered Erdős-Rényi graph, weak scaling

– 6.75 million edges per node (filled 1 GiB)

 HW barrier support is significant at large scale!

BlueGene/P – with HW barrier! Myrinet 2000 with LibNBC

T. Hoefler et al.: Scalable Communication Protocols for Dynamic Sparse Data Exchange
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Parallel Fast Fourier Transform

 1D FFTs in all three dimensions

– Assume 1D decomposition (each process holds a set of planes)

– Best way: call optimized 1D FFTs in parallel  alltoall

– Red/yellow/green are the (three) different processes!

 Alltoall
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A Complex Example: FFT

for(int x=0; x<n/p; ++x) 1d_fft(/* x-th stencil */);

// pack data for alltoall

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);

// unpack data from alltoall and transpose

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);

// pack data for alltoall

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);

// unpack data from alltoall and transpose

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications
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Parallel Fast Fourier Transform

 Data already transformed in y-direction 

72Advanced MPI, ISC (06/19/2016)



Parallel Fast Fourier Transform

 Transform first y plane in z
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Parallel Fast Fourier Transform

 Start ialltoall and transform second plane
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Parallel Fast Fourier Transform

 Start ialltoall (second plane) and transform third
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Parallel Fast Fourier Transform

 Start ialltoall of third plane and …
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Parallel Fast Fourier Transform

 Finish ialltoall of first plane, start x transform
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Parallel Fast Fourier Transform

 Finish second ialltoall, transform second plane
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Parallel Fast Fourier Transform

 Transform last plane → done
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FFT Software Pipelining
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MPI_Request req[nb];

for(int b=0; b<nb; ++b) { // loop over blocks

for(int x=b*n/p/nb; x<(b+1)n/p/nb; ++x) 1d_fft(/* x-th stencil*/);

// pack b-th block of data for alltoall

MPI_Ialltoall(&in, n/p*n/p/bs, cplx_t, &out, n/p*n/p, cplx_t, comm, &req[b]);

}

MPI_Waitall(nb, req, MPI_STATUSES_IGNORE);

// modified unpack data from alltoall and transpose

for(int y=0; y<n/p; ++y) 1d_fft(/* y-th stencil */);

// pack data for alltoall

MPI_Alltoall(&in, n/p*n/p, cplx_t, &out, n/p*n/p, cplx_t, comm);

// unpack data from alltoall and transpose

Hoefler: Leveraging Non-blocking Collective Communication in High-performance Applications



Nonblocking And Collective Summary

 Nonblocking comm does two things:

– Overlap and relax synchronization

 Collective comm does one thing

– Specialized pre-optimized routines 

– Performance portability

– Hopefully transparent performance

 They can be composed

– E.g., software pipelining
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Advanced Topics: Hybrid Programming with 

Threads, Shared Memory, and Accelerators



Why Going Hybrid MPI + X Programming?

Core

Core Core

Core Core

Core Core

Core

Core

Core Core

Core Core

Core Core

Core

Growth of node resources in the Top500 systems. Peter Kogge: “Reading the 
Tea-Leaves: How Architecture Has Evolved at the High End”. IPDPS 2014 Keynote

Domain 
Decomposition

 Sharing promotes cooperation

– Reduced memory consumption

– Efficient use of shared resources: 

caches, TLB entries, network 

endpoints, etc.
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MPI + Threads
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MPI and Threads

 MPI describes parallelism between 

processes (with separate address spaces)

 Thread parallelism provides a shared-

memory model within a process

 OpenMP and Pthreads are common models

– OpenMP provides convenient features for loop-

level parallelism. Threads are created and 

managed by the compiler, based on user 

directives.

– Pthreads provide more complex and dynamic 

approaches. Threads are created and managed 

explicitly by the user.
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Hybrid Programming with MPI+Threads

 In MPI-only programming, 

each MPI process has a single 

thread of execution

 In MPI+threads hybrid 

programming, there can be 

multiple threads executing 

simultaneously

– All threads share all MPI 

objects (communicators, 

requests)

– The MPI implementation might 

need to take precautions to 

make sure the state of the MPI 

stack is consistent

Advanced MPI, ISC (06/19/2016)

Rank 0 Rank 1

MPI-only Programming

Rank 0 Rank 1

MPI+Threads Hybrid Programming
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MPI’s Four Levels of Thread Safety

 MPI defines four levels of thread safety -- these are 

commitments the application makes to the MPI

– MPI_THREAD_SINGLE: only one thread exists in the application

– MPI_THREAD_FUNNELED: multithreaded, but only the main thread 

makes MPI calls (the one that called MPI_Init_thread)

– MPI_THREAD_SERIALIZED: multithreaded, but only one thread at a time

makes MPI calls

– MPI_THREAD_MULTIPLE: multithreaded and any thread can make MPI 

calls at any time (with some restrictions to avoid races – see next slide)

 Thread levels are in increasing order

– If an application works in FUNNELED mode, it can work in SERIALIZED

 MPI defines an alternative to MPI_Init

– MPI_Init_thread(requested, provided)

• Application specifies level it needs; MPI implementation returns level it supports
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MPI_THREAD_SINGLE

 There are no additional user threads in the system

– E.g., there are no OpenMP parallel regions

Advanced MPI, ISC (06/19/2016)

int main(int argc, char ** argv)

{

int buf[100];

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

for (i = 0; i < 100; i++)

compute(buf[i]);

/* Do MPI stuff */

MPI_Finalize();

return 0;

}
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MPI_THREAD_FUNNELED

 All MPI calls are made by the master thread

– Outside the OpenMP parallel regions

– In OpenMP master regions

Advanced MPI, ISC (06/19/2016)

int main(int argc, char ** argv)

{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_FUNNELED, &provided);

if (provided < MPI_THREAD_FUNNELED) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for

for (i = 0; i < 100; i++)

compute(buf[i]);

/* Do MPI stuff */

MPI_Finalize();

return 0;

}
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MPI_THREAD_SERIALIZED

 Only one thread can make MPI calls at a time

– Protected by OpenMP critical regions

Advanced MPI, ISC (06/19/2016)

int main(int argc, char ** argv)

{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_SERIALIZED, &provided);

if (provided < MPI_THREAD_SERIALIZED) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for

for (i = 0; i < 100; i++) {

compute(buf[i]);

#pragma omp critical

/* Do MPI stuff */

}

MPI_Finalize();

return 0;

}
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MPI_THREAD_MULTIPLE

 Any thread can make MPI calls any time (restrictions apply)

Advanced MPI, ISC (06/19/2016)

int main(int argc, char ** argv)

{

int buf[100], provided;

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &provided);

if (provided < MPI_THREAD_MULTIPLE) MPI_Abort(MPI_COMM_WORLD,1);

#pragma omp parallel for

for (i = 0; i < 100; i++) {

compute(buf[i]);

/* Do MPI stuff */

}

MPI_Finalize();

return 0;

}
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Threads and MPI

 An implementation is not required to support levels higher 

than MPI_THREAD_SINGLE; that is, an implementation is not 

required to be thread safe

 A fully thread-safe implementation will support 

MPI_THREAD_MULTIPLE

 A program that calls MPI_Init (instead of MPI_Init_thread) 

should assume that only MPI_THREAD_SINGLE is supported

– MPI Standard mandates MPI_THREAD_SINGLE for MPI_Init

 A threaded MPI program that does not call MPI_Init_thread is 

an incorrect program (common user error we see)
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Implementing Stencil Computation using 

MPI_THREAD_FUNNELED
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Code Examples

 stencil_mpi_ddt_funneled.c

 Parallelize computation (OpenMP parallel for)

 Main thread does all communication
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MPI Semantics and MPI_THREAD_MULTIPLE

 Ordering: When multiple threads make MPI calls concurrently, 

the outcome will be as if the calls executed sequentially in some 

(any) order

– Ordering is maintained within each thread

– User must ensure that collective operations on the same communicator, 

window, or file handle are correctly ordered among threads

• E.g., cannot call a broadcast on one thread and a reduce on another thread on 

the same communicator

– It is the user's responsibility to prevent races when threads in the same 

application post conflicting MPI calls 

• E.g., accessing an info object from one thread and freeing it from another 

thread

 Progress: Blocking MPI calls will block only the calling thread and 

will not prevent other threads from running or executing MPI 

functions
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Ordering in MPI_THREAD_MULTIPLE: Incorrect 

Example with Collectives

Process 0

MPI_Bcast(comm)

MPI_Barrier(comm)

Process 1

MPI_Bcast(comm)

MPI_Barrier(comm)
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Ordering in MPI_THREAD_MULTIPLE: Incorrect 

Example with Collectives

 P0 and P1 can have different orderings of Bcast and Barrier

 Here the user must use some kind of synchronization to 

ensure that either thread 1 or thread 2 gets scheduled first on 

both processes 

 Otherwise a broadcast may get matched with a barrier on the 

same communicator, which is not allowed in MPI

Process 0

Thread 1                        Thread 2

MPI_Bcast(comm)

MPI_Barrier(comm)
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Process 1

Thread 1                        Thread 2

MPI_Barrier(comm)

MPI_Bcast(comm)



Ordering in MPI_THREAD_MULTIPLE: Incorrect 

Example with RMA
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int main(int argc, char ** argv)

{

/* Initialize MPI and RMA window */

#pragma omp parallel for

for (i = 0; i < 100; i++) {

target = rand();

MPI_Win_lock(MPI_LOCK_EXCLUSIVE, target, 0, win);

MPI_Put(..., win);

MPI_Win_unlock(target, win);

}

/* Free MPI and RMA window */

return 0;

}

Different threads can lock the same process causing multiple 
locks to the same target before the first lock is unlocked



Ordering in MPI_THREAD_MULTIPLE: Incorrect 

Example with Object Management

Advanced MPI, ISC (06/19/2016)

Process 0

MPI_Bcast(comm)

MPI_Comm_free(comm)
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Ordering in MPI_THREAD_MULTIPLE: Incorrect 

Example with Object Management

 The user has to make sure that one thread is not using an 

object while another thread is freeing it

– This is essentially an ordering issue; the object might get freed before 

it is used
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Process 0

Thread 1                             Thread 2

MPI_Comm_free(comm)

MPI_Bcast(comm)



Blocking Calls in MPI_THREAD_MULTIPLE: Correct 

Example

 An implementation must ensure that the above example 

never deadlocks for any ordering of thread execution

 That means the implementation cannot simply acquire a 

thread lock and block within an MPI function. It must 

release the lock to allow other threads to make progress.

Process 0

MPI_Recv(src=1)

MPI_Send(dst=1)

Process 1

MPI_Recv(src=0)

MPI_Send(dst=0)

Thread 1

Thread 2
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Implementing Stencil Computation using 

MPI_THREAD_MULTIPLE
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Code Examples

 stencil_mpi_ddt_multiple.c

 Divide the process memory among OpenMP threads

 Each thread responsible for communication and computation
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The Current Situation

 All MPI implementations support MPI_THREAD_SINGLE

 They probably support MPI_THREAD_FUNNELED even if they 

don’t admit it.

– Does require thread-safety for some system routines (e.g. malloc)

– On most systems -pthread will guarantee it (OpenMP implies

-pthread )

 Many (but not all) implementations support THREAD_MULTIPLE

– Hard to implement efficiently though (thread synchronization issues)

 Bulk-synchronous OpenMP programs (loops parallelized with 

OpenMP, communication in between loops) only need 

FUNNELED

– So don’t need “thread-safe” MPI for many hybrid programs

– But watch out for Amdahl’s Law!
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Performance with MPI_THREAD_MULTIPLE

 Thread safety does not come for free

 The implementation must access/modify several shared 

objects (e.g. message queues) in a consistent manner

 To measure the performance impact, we ran tests to measure 

communication performance when using multiple threads 

versus multiple processes

– For results, see Thakur/Gropp paper: “Test Suite for Evaluating 

Performance of Multithreaded MPI Communication,” Parallel 

Computing, 2009
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Message Rate Results on BG/P 

Message Rate Benchmark
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Why is it hard to optimize MPI_THREAD_MULTIPLE

 MPI internally maintains several resources

 Because of MPI semantics, it is required that all 

threads have access to some of the data structures

– E.g., thread 1 can post an Irecv, and thread 2 can wait 

for its completion – thus the request queue has to be 

shared between both threads

– Since multiple threads are accessing this shared queue, 

thread-safety is required to ensure a consistent state of 

the queue – adds a lot of overhead
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Hybrid Programming: Correctness Requirements

 Hybrid programming with MPI+threads does not do much to 

reduce the complexity of thread programming

– Your application still has to be a correct multi-threaded application

– On top of that, you also need to make sure you are correctly following 

MPI semantics

 Many commercial debuggers offer support for debugging 

hybrid MPI+threads applications (mostly for MPI+Pthreads

and MPI+OpenMP)
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An Example we encountered

 We received a bug report about a very simple 

multithreaded MPI program that hangs

 Run with 2 processes

 Each process has 2 threads

 Both threads communicate with threads on the other 

process as shown in the next slide

 We spent several hours trying to debug MPICH before 

discovering that the bug is actually in the user’s program 
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2 Proceses, 2 Threads, Each Thread Executes this 

Code

for (j = 0; j < 2; j++) {

if (rank == 1) {

for (i = 0; i < 2; i++)

MPI_Send(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD);

for (i = 0; i < 2; i++)

MPI_Recv(NULL, 0, MPI_CHAR, 0, 0, MPI_COMM_WORLD, &stat);

}

else {  /* rank == 0 */

for (i = 0; i < 2; i++)

MPI_Recv(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD, &stat);

for (i = 0; i < 2; i++)

MPI_Send(NULL, 0, MPI_CHAR, 1, 0, MPI_COMM_WORLD);

}

}
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Intended Ordering of Operations

 Every send matches a receive on the other rank
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2 recvs (T2)
2 sends (T2)
2 recvs (T2)
2 sends (T2)

2 recvs (T1)
2 sends (T1)
2 recvs (T1)
2 sends (T1)

Rank 0

2 sends (T2)
2 recvs (T2)
2 sends (T2)
2 recvs (T2)

2 sends (T1)
2 recvs (T1)
2 sends (T1)
2 recvs (T1)

Rank 1
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Possible Ordering of Operations in Practice

 Because the MPI operations can be issued in an arbitrary 

order across threads, all threads could block in a RECV call

1 recv (T2)

1 recv (T2)

2 sends (T2)
2 recvs (T2)
2 sends (T2)

2 recvs (T1)
2 sends (T1)
1 recv (T1)

1 recv (T1)

2 sends (T1)

Rank 0

2 sends (T2)
1 recv (T2)

1 recv (T2)

2 sends (T2)
2 recvs (T2)

2 sends (T1)
1 recv (T1)

1 recv (T1)

2 sends (T1)
2 recvs (T1)

Rank 1
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MPI + Shared-Memory
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Hybrid Programming with Shared Memory

 MPI-3 allows different processes to allocate shared memory 

through MPI

– MPI_Win_allocate_shared

 Uses many of the concepts of one-sided communication

 Applications can do hybrid programming using MPI or 

load/store accesses on the shared memory window

 Other MPI functions can be used to synchronize access to 

shared memory regions

 Can be simpler to program than threads
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Creating Shared Memory Regions in MPI
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MPI_COMM_WORLD

MPI_Comm_split_type (COMM_TYPE_SHARED)

Shared memory 
communicator

MPI_Win_allocate_shared

Shared memory 
window

Shared memory 
window

Shared memory 
window

Shared memory 
communicator

Shared memory 
communicator
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Load/store

Regular RMA windows vs. Shared memory windows

 Shared memory windows allow 

application processes to directly 

perform load/store accesses on 

all of the window memory

– E.g., x[100] = 10

 All of the existing RMA functions 

can also be used on such 

memory for more advanced 

semantics such as atomic 

operations

 Can be very useful when 

processes want to use threads 

only to get access to all of the 

memory on the node

– You can create a shared memory 

window and put your shared data

Advanced MPI, ISC (06/19/2016)

Local 
memory

P0

Local 
memory

P1

Load/store
PUT/GET

Traditional RMA windows

Load/store

Local memory

P0 P1

Load/store

Shared memory windows

Load/store
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MPI_COMM_SPLIT_TYPE

 Create a communicator where processes “share a property”

– Properties are defined by the “split_type”

 Arguments:

– comm - input communicator (handle)

– Split_type - property of the partitioning (integer)

– Key - Rank assignment ordering (nonnegative integer)

– info - info argument (handle)

– newcomm- output communicator (handle)
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MPI_Comm_split_type(MPI_Comm comm, int split_type,

int key, MPI_Info info, MPI_Comm *newcomm)



MPI_WIN_ALLOCATE_SHARED

 Create a remotely accessible memory region in an RMA window

– Data exposed in a window can be accessed with RMA ops or load/store

 Arguments:

– size - size of local data in bytes (nonnegative integer)

– disp_unit - local unit size for displacements, in bytes (positive integer)

– info - info argument (handle)

– comm - communicator (handle)

– baseptr - pointer to exposed local data

– win            - window (handle)
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MPI_Win_allocate_shared(MPI_Aint size, int disp_unit,

MPI_Info info, MPI_Comm comm, void *baseptr,

MPI_Win *win)



Shared Arrays with Shared memory windows
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int main(int argc, char ** argv)

{

int buf[100];

MPI_Init(&argc, &argv);

MPI_Comm_split_type(..., MPI_COMM_TYPE_SHARED, .., &comm);

MPI_Win_allocate_shared(comm, ..., &win);

MPI_Win_lockall(win);

/* copy data to local part of shared memory */

MPI_Win_sync(win);

/* use shared memory */

MPI_Win_unlock_all(win);

MPI_Win_free(&win);

MPI_Finalize();

return 0;

}
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Memory allocation and placement

 Shared memory allocation does not need to be uniform 

across processes

– Processes can allocate a different amount of memory (even zero)

 The MPI standard does not specify where the memory would 

be placed (e.g., which physical memory it will be pinned to)

– Implementations can choose their own strategies, though it is 

expected that an implementation will try to place shared memory 

allocated by a process “close to it”

 The total allocated shared memory on a communicator is 

contiguous by default

– Users can pass an info hint called “noncontig” that will allow the MPI 

implementation to align memory allocations from each process to 

appropriate boundaries to assist with placement
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Example Computation: Stencil
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Message passing model 
requires ghost-cells to be 
explicitly communicated 

to neighbor processes

In the shared-memory 
model, there is no 
communication.  

Neighbors directly access 
your data.
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Walkthrough of 2D Stencil Code with Shared 

Memory Windows

 stencil_mpi_shmem.c
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Which Hybrid Programming Method to Adopt?

 It depends on the application, target machine, and MPI 

implementation

 When should I use process shared memory?

– The only resource that needs sharing is memory

– Few allocated objects need sharing (easy to place them in a public shared 

region)

 When should I use threads?

– More than memory resources need sharing (e.g., TLB)

– Many application objects require sharing

– Application computation structure can be easily parallelized with high-

level OpenMP loops
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Example: Quantum Monte Carlo

W
Walker data

 Memory capacity bound with MPI-only

 Hybrid approaches
– MPI + threads (e.g. X = OpenMP, Pthreads)

– MPI + shared-memory (X  = MPI)

 Can use direct load/store operations 
instead of message passing

Large B-spline table

W W W W

Thread 0 Thread 1

MPI Task 1

Core Core

MPI + Theads
• Share everything by default
• Privatize data when necessary

MPI + Shared-Memory (MPI 3.0~)
• Everything private by default
• Expose shared data explicitly

MPI Task 1MPI Task 0

Large B-spline table in a Share-Memory 
Window

W

Core

W

Core

WW
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MPI + Accelerators
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Accelerators in Parallel Computing

 General purpose, highly

parallel processors

– High FLOPs/Watt and FLOPs/$

– Unit of execution Kernel

– Separate memory subsystem

– Prog. Models: CUDA, OpenCL, …

 Clusters with accelerators are 

becoming common

 New programmability and 

performance challenges for 

programming models and runtime 

systems
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Hybrid Programming with Accelerators

 Many users are looking to use accelerators within their MPI 

applications

 The MPI standard does not provide any special semantics to 

interact with accelerators

– Current MPI threading semantics are considered sufficient by most 

users

– There are some research efforts for making accelerator memory 

directly accessibly by MPI, but those are not a part of the MPI standard
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Current Model for MPI+Accelerator Applications
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GPU

P0

GPU

GPU

P2
GPU

P3
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Alternate MPI+Accelerator models being studied

 Some MPI implementations (MPICH, Open MPI, MVAPICH) 

are investigating how the MPI implementation can directly 

send/receive data from accelerators

– Unified virtual address (UVA) space techniques where all memory 

(including accelerator memory) is represented with a “void *”

– Communicator and datatype attribute models where users can inform 

the MPI implementation of where the data resides

 Clear performance advantages demonstrated in research 

papers, but these features are not yet a part of the MPI 

standard (as of MPI-3.1)

– Could be incorporated in a future version of the standard
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Advanced Topics: Network Locality and 

Topology Mapping



Topology Mapping and Neighborhood Collectives

 Topology mapping basics

– Allocation mapping vs. rank reordering

– Ad-hoc solutions vs. portability

 MPI topologies

– Cartesian

– Distributed graph

 Collectives on topologies – neighborhood collectives

– Use-cases
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Topology Mapping Basics

 MPI supports rank reordering 

– Change numbering in a given allocation to reduce congestion or 

dilation

– Sometimes automatic (early IBM SP machines)

 Properties

– Always possible, but effect may be limited (e.g., in a bad allocation)

– Portable way: MPI process topologies

• Network topology is not exposed

– Manual data shuffling after remapping step
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Example: On-Node Reordering

Naïve Mapping Optimized Mapping

Topomap

Gottschling et al.: Productive Parallel Linear Algebra Programming with Unstructured Topology Adaption
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Off-Node (Network) Reordering

Application Topology Network Topology

Naïve Mapping Optimal Mapping

Topomap
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MPI Topology Intro

 Convenience functions (in MPI-1)

– Create a graph and query it, nothing else

– Useful especially for Cartesian topologies

• Query neighbors in n-dimensional space

– Graph topology: each rank specifies full graph 

 Scalable Graph topology (MPI-2.2)

– Graph topology: each rank specifies its neighbors or an arbitrary 

subset of the graph

 Neighborhood collectives (MPI-3.0)

– Adding communication functions defined on graph topologies 

(neighborhood of distance one)
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MPI_Cart_create

 Specify ndims-dimensional topology

– Optionally periodic in each dimension (Torus)

 Some processes may return MPI_COMM_NULL

– Product sum of dims must be <= P

 Reorder argument allows for topology mapping

– Each calling process may have a new rank in the created communicator

– Data has to be remapped manually
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MPI_Cart_create(MPI_Comm comm_old, int ndims, const int *dims,

const int *periods, int reorder, MPI_Comm *comm_cart)



MPI_Cart_create Example

 Creates logical 3-d Torus of size 5x5x5

 But we’re starting MPI processes with a one-dimensional 

argument (-p X)

– User has to determine size of each dimension

– Often as “square” as possible, MPI can help!
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int dims[3] = {5,5,5};

int periods[3] = {1,1,1};

MPI_Comm topocomm;

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);



MPI_Dims_create

 Create dims array for Cart_create with nnodes and ndims

– Dimensions are as close as possible (well, in theory)

 Non-zero entries in dims will not be changed

– nnodes must be multiple of all non-zeroes
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MPI_Dims_create(int nnodes, int ndims, int *dims)



MPI_Dims_create Example

 Makes life a little bit easier

– Some problems may be better with a non-square layout though
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int p;

MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Dims_create(p, 3, dims);

int periods[3] = {1,1,1};

MPI_Comm topocomm;

MPI_Cart_create(comm, 3, dims, periods, 0, &topocomm);



Cartesian Query Functions

 Library support and convenience!

 MPI_Cartdim_get()

– Gets dimensions of a Cartesian communicator

 MPI_Cart_get()

– Gets size of dimensions

 MPI_Cart_rank()

– Translate coordinates to rank

 MPI_Cart_coords()

– Translate rank to coordinates
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Cartesian Communication Helpers

 Shift in one dimension

– Dimensions are numbered from 0 to ndims-1

– Displacement indicates neighbor distance (-1, 1, …)

– May return MPI_PROC_NULL

 Very convenient, all you need for nearest neighbor 

communication

– No “over the edge” though
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MPI_Cart_shift(MPI_Comm comm, int direction, int disp,

int *rank_source, int *rank_dest)



Code Example

 stencil-mpi-carttopo.c

 Adds calculation of neighbors with topology
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MPI_Graph_create(MPI_Comm comm_old, int nnodes,

const int *index, const int *edges, int reorder,

MPI_Comm *comm_graph)

MPI_Graph_create

 Don’t use!!!!!

 nnodes is the total number of nodes

 index i stores the total number of neighbors for the first i

nodes (sum)

– Acts as offset into edges array

 edges stores the edge list for all processes

– Edge list for process j starts at index[j] in edges

– Process j has index[j+1]-index[j] edges
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Distributed graph constructor

 MPI_Graph_create is discouraged

– Not scalable

– Not deprecated yet but hopefully soon

 New distributed interface:

– Scalable, allows distributed graph specification

• Either local neighbors or any edge in the graph

– Specify edge weights

• Meaning undefined but optimization opportunity for vendors!

– Info arguments

• Communicate assertions of semantics to the MPI library

• E.g., semantics of edge weights

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2
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MPI_Dist_graph_create_adjacent

 indegree, sources, ~weights – source proc. Spec.

 outdegree, destinations, ~weights – dest. proc. spec.

 info, reorder, comm_dist_graph – as usual

 directed graph

 Each edge is specified twice, once as out-edge (at the source) 

and once as in-edge (at the dest)

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2
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MPI_Dist_graph_create_adjacent(MPI_Comm comm_old,

int indegree, const int sources[], const int sourceweights[],

int outdegree, const int destinations[],

const int destweights[], MPI_Info info, int reorder,

MPI_Comm *comm_dist_graph)



MPI_Dist_graph_create_adjacent

 Process 0:

– Indegree: 0

– Outdegree: 2

– Dests: {3,1}

 Process 1:

– Indegree: 3

– Outdegree: 2

– Sources: {4,0,2}

– Dests: {3,4}

 …

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2
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MPI_Dist_graph_create

 n – number of source nodes

 sources – n source nodes 

 degrees – number of edges for each source

 destinations, weights – dest. processor specification

 info, reorder – as usual

 More flexible and convenient 

– Requires global communication

– Slightly more expensive than adjacent specification
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MPI_Dist_graph_create(MPI_Comm comm_old, int n,

const int sources[], const int degrees[],

const int destinations[], const int weights[], MPI_Info info,

int reorder, MPI_Comm *comm_dist_graph)



MPI_Dist_graph_create

 Process 0:

– N: 2

– Sources: {0,1}

– Degrees: {2,1} *

– Dests:  {3,1,4}

 Process 1:

– N: 2

– Sources: {2,3}

– Degrees: {1,1}

– Dests: {1,2}

 …

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2

148

* Note that in this example, process 0 specifies only one of the two outgoing edges
of process 1; the second outgoing edge needs to be specified by another process
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Distributed Graph Neighbor Queries

 Query the number of neighbors of calling process

 Returns indegree and outdegree!

 Also info if weighted

Hoefler et al.: The Scalable Process Topology Interface of MPI 2.2
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 Query the neighbor list of calling process

 Optionally return weights

MPI_Dist_graph_neighbors_count(MPI_Comm comm,

int *indegree,int *outdegree, int *weighted)

MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree,

int sources[], int sourceweights[], int maxoutdegree,

int destinations[],int destweights[])



Further Graph Queries

 Status is either:

– MPI_GRAPH (ugs)

– MPI_CART

– MPI_DIST_GRAPH

– MPI_UNDEFINED (no topology)

 Enables to write libraries on top of MPI topologies!
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MPI_Topo_test(MPI_Comm comm, int *status)



Neighborhood Collectives 

 Topologies implement no communication!

– Just helper functions

 Collective communications only cover some patterns

– E.g., no stencil pattern

 Several requests for “build your own collective” functionality in 

MPI

– Neighborhood collectives are a simplified version

– Cf. Datatypes for communication patterns!
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Cartesian Neighborhood Collectives

 Communicate with direct neighbors in Cartesian topology

– Corresponds to cart_shift with disp=1

– Collective (all processes in comm must call it, including processes 

without neighbors)

– Buffers are laid out as neighbor sequence:

• Defined by order of dimensions, first negative, then positive

• 2*ndims sources and destinations

• Processes at borders (MPI_PROC_NULL) leave holes in buffers (will not be 

updated or communicated)!

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI
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Cartesian Neighborhood Collectives

 Buffer ordering example:

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI
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Graph Neighborhood Collectives

 Collective Communication along arbitrary neighborhoods

– Order is determined by order of neighbors as returned by 

(dist_)graph_neighbors.

– Distributed graph is directed, may have different numbers of 

send/recv neighbors

– Can express dense collective operations 

– Any persistent communication pattern!

T. Hoefler and J. L. Traeff: Sparse Collective Operations for MPI
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MPI_Neighbor_allgather

 Sends the same message to all neighbors

 Receives indegree distinct messages

 Similar to MPI_Gather

– The all prefix expresses that each process is a “root” of his 

neighborhood

 Vector version for full flexibility
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MPI_Neighbor_allgather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)



MPI_Neighbor_alltoall

 Sends outdegree distinct messages

 Received indegree distinct messages

 Similar to MPI_Alltoall

– Neighborhood specifies full communication relationship

 Vector and w versions for full flexibility
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MPI_Neighbor_alltoall(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)



Nonblocking Neighborhood Collectives

 Very similar to nonblocking collectives

 Collective invocation

 Matching in-order (no tags)

– No wild tricks with neighborhoods! In order matching per 

communicator!
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MPI_Ineighbor_allgather(…, MPI_Request *req);

MPI_Ineighbor_alltoall(…, MPI_Request *req);



Code Example

 stencil_mpi_carttopo_neighcolls.c

 Adds neighborhood collectives to the topology
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What’s next

Towards MPI 4.0

Planned/Proposed Extensions



Introduction

 The MPI Forum continues to meet once every 3 months to 

define future versions of the MPI Standard

 We describe some of the proposals the Forum is currently 

considering

 None of these topics are guaranteed to be in MPI-4

– These are simply proposals that are being considered
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MPI Working Groups

 Point-to-point communication

 Fault tolerance

 Hybrid programming

 Persistence

 Tools interfaces

 Large counts: C11 bindings for large counts
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Point-to-Point Working Group



Current Topics

 Streaming communication

– On hold

 Batched communication

– Initial proposal

 Allocate receive

– On hold

 Receive reduce/accumulate

– On hold

 Communication relaxation hints

– Active discussion
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What is an MPI Stream?

 From single sender to single receiver only

– Joined by an existing communicator

 Ordered and reliable

 Sender can send any amount of data

 Received can receive any amount of data

– (up to what is available)
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Discussion issues with MPI streams

 Datatypes as the unit of transmission

– Normal message boundaries would be ignored

 Flow-control/buffering

– E.g., receiver consistently slower than sender

 Allow buffer underrun or block receiver?

– E.g., receiver wants 33 integers, but only 16 are available

 Performance benefits discussion
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Genome Assembly

 Genome analysis

– Sequence alignment

– Sequence assembly

• Reconstruct long DNA 

sequences by merging many 

small fragments

– Gene mapping

Hard to read whole genomes in current sequencing technology. 
Instead, read many small fragments , called “reads”.

[Adapted from National Human Genome 
Research Institute]

AGTTCCCTGGAACCGTGA

AGT

TTC

GTT TCC

CCG
GAGAGTTC

GGAAC

CTGGA

Search & merge
overlapping reads

Output long contigs

Represent reads as 
De Bruijn graph

AGTTCCCTGGAACCGTGA

Assembly

Sequencing

AGT

AGTTCCCTGGAACCGTGAC…

CCT

DNA Samples Reads

Break into 
small “reads”

Remove erroneous links

Advanced MPI, ISC (06/19/2016) 166



Massive Data Movement in SWAP-Assembly

Basic edge merging algorithm

106+ outstanding messages
per process 

(Human genome on Cray Edison *)

remote searchlocal node

remote nodes

ACGCGATTCAG
GCGATTCAGTA

DNA consensus sequence

1. Send local DNA unit to that node; 
2. Search matching unit on that node; 
3. Merge two units on that node;
4. Return merged unit.

ACGCGATTCAG

ACGCGATTCAGTA

(64Bytes ~ 1MBytes for single message)

Step 1

Step 2, 3

Step 4

process (server 1)

process (server 2)

process (server 3)

DNA units 1: 
ACGCGATTCAG

DNA units 3: 
ATGAGGCATAC

DNA units 2: 
GCATAGTATCG

memory

process (sender)

* 64GB memory per node, 
1KB memory per DNA reads, 
exclude runtime memory 
consumption.

Large amount of outstanding data movement
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Issues with Traditional MPI_Isend/MPI_Irecv

 Each operation creates a new request object

 MPI library runs out of request objects after a few thousand 

operations

 Application cannot issue a lot of messages to fully utilize the 

network
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Batched Communication Operations

 Ability to batch multiple operations into a single request 

object

– MPI_Request_batch_init

– MPI_Isend_batch, MPI_Irecv_batch, …

 Proportionally reduced number of requests

 Can allow applications to consolidate multiple completions 

into a single request

Advanced MPI, ISC (06/19/2016) 169



Allocate Receive

 MPI_Arecv: the receive buffer is an output argument instead 

of an input argument, and the implementation allocates that 

memory internally

 Allows implementation to allocate memory for the size of the 

message, eliminates buffering overhead when message size is 

not known a priori

 Allows copy-free implementation of unexpected messages 

using an eager-like protocol
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Receive reduce/accumulate

 MPI_Recv_{reduce,accumulate}: the incoming data is 

reduced/accumulated onto the receive buffer.

 Matches a common application pattern during boundary 

element exchange and allows implementation to minimize 

buffering in this case and potentially do more efficiently.

 Useful for creating user-defined, potentially dynamic 

reduction trees, without graph communicators.

 May allow for more efficient implementation of some forms 

of active-messages.
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Communication Relaxation Hints

 mpi_assert_no_any_tag

– The process will not use MPI_ANY_TAG

 mpi_assert_no_any_source

– The process will not use MPI_ANY_SOURCE

 mpi_assert_exact_length

– Receive buffers must be correct size for messages

 mpi_assert_overtaking_allowed

– All messages are logically concurrent
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Meeting Details

 Teleconference calls

– Fortnightly on Monday at 11:00 central US

 Email list:

– mpiwg-p2p@lists.mpi-forum.org

 Face-to-face meetings

– http://meetings.mpi-forum.org/Meeting_details.php
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Fault Tolerance Working Group



175

Improved Support for Fault Tolerance

 MPI always had support for error handlers and allows implementations 

to return an error code and remain alive

 MPI Forum working on additional support for MPI-4

 Current proposal handles fail-stop process failures (not silent data 

corruption or Byzantine failures)

 If a communication operation fails because the other process has failed, the function 

returns error code MPI_ERR_PROC_FAILED

 User can call MPI_Comm_shrink to create a new communicator that excludes failed 

processes

 Collective communication can be performed on the new communicator

 Lots of other details in the proposal…
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What is the working group doing?

Decide the best way forward for fault tolerance in MPI.

○ Currently looking at User Level Failure Mitigation (ULFM), but that’s 

only part of the puzzle.

Look at all parts of MPI and how they describe error detection 

and handling.

○ Error handlers probably need an overhaul

○ Allow clean error detection even without recovery

Consider alternative proposals and how they can be integrated 

or live alongside existing proposals.

○ Reinit, FA-MPI, others

Start looking at the next thing

○ Data resilience?
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Noncatastrophic Errors

 Currently the state of MPI is undefined if any error occurs

 Even simple errors such as arguments are incorrect, can cause 

the state of MPI to be undefined

 Noncatastrophic errors are an opportunity for the MPI 

implementation to define some errors as “ignorable”

 For an error, the user can query if it is catastrophic or not

 If the error is not catastrophic, the user can simply pretend like 

(s)he never issued the operation and continue
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User Level Failure Mitigation Main Ideas

● Enable application-level recovery by providing minimal FT API 

to prevent deadlock and enable recovery

● Don’t do recovery for the application, but let the application 

(or a library) do what is best.

● Currently focused on process failure (not data errors or 

protection)
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Is ULFM the only way?

No!

○ Fenix, presented at SC ‘14 provides more user friendly semantics on top 

of MPI/ULFM

Other research discussions include

○ Reinit (LLNL) - Fail fast by causing the entire application to roll back to 

MPI_INIT with the original number of processes.

○ FA-MPI (Auburn/UAB) - Transactions allow the user to use parallel 

try/catch-like semantics to write their application.

■ Paper in the SC ‘15 Proceedings (ExaMPI Workshop)

Some of these ideas fit with ULFM directly and others require 

some changes

○ We’re working with the Tools WG to revamp PMPI to support multiple 

tools/libraries/etc. which would enable nice fault tolerance semantics.
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How Can I Participate?

Website: http://www.github.com/mpiwg-ft

Email: mpiwg-ft@lists.mpi-forum.org

Conference Calls: Every other Tuesday at 3:00 PM Eastern US

In Person: MPI Forum Face To Face Meetings
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Hybrid Programming Working Group



MPI Forum Hybrid WG Goals

 Ensure interoperability of MPI with other programming 

models

– MPI+threads (pthreads, OpenMP, user-level threads)

– MPI+CUDA, MPI+OpenCL

– MPI+PGAS models
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MPI-3.1 Performance/Interoperability Concerns

 Resource sharing between MPI processes

– System resources do not scale at the same rate as processing cores

• Memory, network endpoints, TLB entries, …

• Sharing is necessary

– MPI+threads gives a method for such sharing of resources

 Performance Concerns

– MPI-3.1 provides a single view of the MPI stack to all threads

• Requires all MPI objects (requests, communicators) to be shared between 

all threads

• Not scalable to large number of threads

• Inefficient when sharing of objects is not required by the user

– MPI-3.1 does not allow a high-level language to interchangeably use 

OS processes or threads

• No notion of addressing a single or a collection of threads

• Needs to be emulated with tags or communicators
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Single view of MPI objects

 MPI-3.1 specification requirements

– It is valid in MPI to have one thread generate a request (e.g., through MPI_IRECV) 

and another thread wait/test on it

– One thread might need to make progress on another’s requests

– Requires all objects to be maintained in a shared space

– When a thread accesses an object, it needs to be protected through locks/atomics

• Critical sections become expensive with hundreds of threads accessing it

 Application behavior

– Many (but not all) applications do not require such sharing

– A thread that generates a request is responsible for completing it

• MPI guarantees are safe, but unnecessary for such applications
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P0 (Thread 1) P0 (Thread 2) P1

MPI_Irecv(…, comm1, &req1); MPI_Irecv(…, comm2, &req2); MPI_Ssend(…, comm1);

pthread_barrier(); pthread_barrier(); MPI_Ssend(…, comm2);

MPI_Wait(&req2, …);

pthread_barrier(); pthread_barrier();

MPI_Wait(&req1, …);
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Interoperability with High-level Languages

 In MPI-3.1, there is no notion of sending a message to a 

thread

– Communication is with MPI processes – threads share all resources in 

the MPI process

– You can emulate such matching with tags or communicators, but 

some pieces (like collectives) become harder and/or inefficient

 Some high-level languages do not expose whether their 

processing entities are processes or threads

– E.g., PGAS languages

 When these languages are implemented on top of MPI, the 

language runtime might not be able to use MPI efficiently
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MPI Endpoints: Proposal for MPI-4

 Idea is to have multiple addressable communication entities 

within a single process

– Instantiated in the form of multiple ranks per MPI process

 Each rank can be associated with one or more threads

 Lesser contention for communication on each “rank”

 In the extreme case, we could have one rank per thread (or 

some ranks might be used by a single thread)
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MPI Endpoints Semantics

 Creates new MPI ranks from existing ranks in parent communicator
• Each process in parent comm. requests a number of endpoints

• Array of output handles, one per local rank (i.e. endpoint) in endpoints communicator

• Endpoints have MPI process semantics (e.g. progress, matching, collectives, …)

 Threads using endpoints behave like MPI processes
• Provide per-thread communication state/resources

• Allows implementation to provide process-like performance for threads
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MPI_Comm_create_endpoints(MPI_Comm parent_comm, int my_num_ep,
MPI_Info info, MPI_Comm out_comm_handles[])
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MPI Endpoints
Relax the 1-to-1 mapping of ranks to threads/processes
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int main(int argc, char **argv) {

int world_rank, tl;
int max_threads = omp_get_max_threads();
MPI_Comm ep_comm[max_threads];

MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &tl);
MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

#pragma omp parallel
{

int nt = omp_get_num_threads();
int tn = omp_get_thread_num();
int ep_rank;

#pragma omp master
{

MPI_Comm_create_endpoints(MPI_COMM_WORLD, nt, MPI_INFO_NULL, ep_comm);
}

#pragma omp barrier
MPI_Comm_rank(ep_comm[tn], &ep_rank);
... // Do work based on ‘ep_rank’
MPI_Allreduce(..., ep_comm[tn]);

MPI_Comm_free(&ep_comm[tn]);
}
MPI_Finalize();

}
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Additional Notes

 Useful for more than just avoiding locks

– Semantics that are “rank-specific” become more flexible

• E.g., ordering for operations from a process

• Ordering constraints for MPI RMA accumulate operations

 Supplementary proposal on thread-safety requirements for 

endpoint communicators

– Is each rank only accessed by a single thread or multiple threads?

– Might get integrated into the core proposal

 Implementation challenges being looked into

– Simply having endpoint communicators might not be useful, if the MPI 

implementation has to make progress on other communicators too
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More Info

 Endpoints:

• https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/380

 Hybrid Working Group:

• https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/MPI3Hybrid
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Persistence Working Group



Persistent Collective Operations

 An all-to-all transfer is done many times in an application

 The specific sends and receives represented never change (size, type, 

lengths, transfers)

 A nonblocking persistent collective operation can take the time to apply a 

heuristic and choose a faster way to move that data

 Fixed cost of making those decisions could be high (are amortized over all 

the times the function is used

 Static resource allocation can be done

 Choose fast(er) algorithm, take advantage of special cases

 Reduce queueing costs

 Special limited hardware can be allocated if available

 Choice of multiple transfer paths could also be performed
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Basics

 Mirror regular nonblocking collective operations

 For each nonblocking MPI collective, add a persistent variant

 For every MPI_I<coll>, add MPI_<coll>_init

 Parameters are identical to the corresponding nonblocking

variant

 All arguments “fixed” for subsequent uses

 Persistent collective operations cannot be matched with 

blocking or nonblocking collective calls
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Init/Start

 The init function calls only perform initialization; do not start 

the operation

 E.g., MPI_Allreduce_init

– Produces a persistent request (not destroyed by completion)

 Works with MPI_Start/MPI_Startall (cannot have multiple 

operations on the same communicator in Startall)

 Only inactive requests can be started

 MPI_Request_free can free inactive requests
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Ordering of Inits and Starts

 Inits are nonblocking collective calls and must be ordered

 Persistent collective operations must be started in the same 

order at all processes

 Startall cannot contain multiple operations on the same 

communicator due to ordering ambiguity
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Example
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Tools Working Group



Active Proposals (1/2)

 New interface to replace PMPI

– Known, longstanding problems with the current profiling interface 

PMPI

• One tool at a time can use it

• Forces tools to be monolithic (a single shared library)

• The interception model is OS dependent

– New interface

• Callback design

• Multiple tools can potentially attach

• Maintain all old functionality

 New feature for event notification in MPI_T

– PERUSE

– Tool registers for interesting event and gets callback when it happens 
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Active Proposals (2/2)

 Debugger support - MPIR interface

– Fixing some bugs in the original “blessed” document

• Missing line numbers!

– Support non-traditional MPI implementations

• Ranks are implemented as threads

– Support for dynamic applications

• Commercial applications/ Ensemble applications

• Fault tolerance

– Handle Introspection Interface

• See inside MPI to get details about MPI Objects

– Communicators, File Handles, etc.
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Can I Join?

 Join the mailing list

– http://lists.mpi-forum.org/

– mpiwg-tools

 Join our meetings

– https://github.com/mpiwg-tools/tools-issues/wiki/Meetings

 Look at the wiki for current topics

– https://github.com/mpiwg-tools/tools-issues/wiki
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Large Count Working Group



Problem with Large Counts

 MPI_Send/Recv and other functions take “int” as the count 

for data

– What happens for data larger than 2GB x datatype size?

– You create a new large “contiguous” derived datatype and send that

– Possible, but clumsy

 What about duplicating all MPI functions to change “int” to 

“MPI_Count” (which is a large, typically 64-bit, integer)

– Doubles the number of MPI functions

– Possible, but clumsy
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New C11 Bindings

 Use C11 _Generic type to provide multiple function 

prototypes

– Like C++ function overloading, but done with compile time macro 

replacement

 MPI_Send will have two function signatures

– One for traditional “int” arguments

– One for new “MPI_Count” arguments

 Fully backward compatible for existing applications

 New applications can promote their data lengths to 64-bit 

without changing functions everywhere
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Concluding Remarks

 Parallelism is critical today, given that that is the only way to 

achieve performance improvement with the modern hardware

 MPI is an industry standard model for parallel programming

– A large number of implementations of MPI exist (both commercial and 

public domain)

– Virtually every system in the world supports MPI

 Gives user explicit control on data management

 Widely used by many many scientific applications with great 

success

 Your application can be next!
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Web Pointers
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 MPI standard : http://www.mpi-forum.org/docs/docs.html

 MPI Forum : http://www.mpi-forum.org/

 MPI implementations: 

– MPICH : http://www.mpich.org

– MVAPICH : http://mvapich.cse.ohio-state.edu/

– Intel MPI: http://software.intel.com/en-us/intel-mpi-library/

– Microsoft MPI: www.microsoft.com/en-us/download/details.aspx?id=39961

– Open MPI : http://www.open-mpi.org/

– IBM MPI, Cray MPI, HP MPI, TH MPI, …

 Several MPI tutorials can be found on the web

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
http://software.intel.com/en-us/intel-mpi-library/
http://www.microsoft.com/en-us/download/details.aspx?id=39961
http://www.open-mpi.org/


Conclusions



Concluding Remarks

 Parallelism is critical today, given that that is the only way to 

achieve performance improvement with the modern 

hardware

 MPI is an industry standard model for parallel programming

– A large number of implementations of MPI exist (both commercial and 

public domain)

– Virtually every system in the world supports MPI

 Gives user explicit control on data management

 Widely used by many many scientific applications with great 

success

 Your application can be next!
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Web Pointers

 MPI standard : http://www.mpi-forum.org/docs/docs.html

 MPI Forum : http://www.mpi-forum.org/

 MPI implementations: 

– MPICH : http://www.mpich.org

– MVAPICH (MPICH on InfiniBand) : http://mvapich.cse.ohio-state.edu/

– Intel MPI (MPICH derivative): http://software.intel.com/en-us/intel-mpi-

library/

– Microsoft MPI (MPICH derivative)

– Open MPI : http://www.open-mpi.org/

– IBM MPI, Cray MPI, HP MPI, TH MPI, …

 Several MPI tutorials can be found on the web
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