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ABSTRACT

Parallelism is steadily growing, remote-data access will soon dom-
inate the execution time of large-scale applications. Many large-
scale communication patterns expose significant structure that can
be used to schedule communications accordingly. In this work, we
identify concurrent communication patterns and transform them to
semantically equivalent but faster communications. We show a di-
rected acyclic graph formulation for communication schedules and
concisely define their synchronization and data movement seman-
tics. Our dataflow solver computes an internal representation (IR)
that is amenable to pattern detection. We demonstrate a detection
algorithm for our IR that is guaranteed to detect communication
kernels on subsets of the graph and replace the subgraph with hard-
ware accelerated or hand-tuned kernels. Those techniques are im-
plemented in an open-source detection and transformation frame-
work to optimize communication patterns. Experiments show that
our techniques can improve the performance of representative ex-
ample codes by several orders of magnitude on two different sys-
tems. However, we also show that some collective detection prob-
lems on process subsets are NP-hard. The developed analysis tech-
niques are a first important step towards automatic large-scale com-
munication transformations. Our developed techniques open sev-
eral avenues for additional transformation heuristics and analyses.
We expect that such communication analyses and transformations
will become as natural as pattern detection, just-in-time compiler
optimizations, and autotuning are today for serial codes.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming

General Terms

Performance
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1. INTRODUCTION
Compiler transformations, such as loop tiling, hoisting, unrolling,
or fusion, are well known to improve performance of serial codes.
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Such transformations are important for performance portability to
different architectures and work by transforming the dataflow graph
(e.g., in a polyhedral model) without changing the program seman-
tics. As applications move to hundreds of thousands of proces-
sors in the next generation computing systems, it is not sufficient
to only optimize the serial parts of the computation. In fact, it can
be expected that the time to solution will be dominated by commu-
nication and it will thus be most important to also optimize those
critical communication parts of parallel applications.
Well-known optimizations at the message level, such as pipelining
[30], remote direct memory access [24], or message coalescing,
have a fundamental limitation: No matter how powerful, they are

no substitute for hand-optimized (collective) communication algo-

rithms. Consider a blocking broadcast to P processes. For large P,
a less optimized binomial tree algorithm will always outperform a
highly optimized (but asymptotically slower) linear broadcast.
Similar arguments have been well-studied for serial codes. For
example, the performance of hand-tuned routines such as Goto’s
dense matrix multiplication [10] can hardly be achieved by auto-
matic transformations of the simple three-loop formulation. In-
stead, kernel recognition is considered as generally beneficial [19].
The recognition is often performed on some representation of the
dataflow graph [13] where semantic components are replaced with
calls to the optimized kernel routine. In this work, we extend this

idea towards the recognition and replacement of parallel applica-

tion communication patterns.

Most of today’s large-scale parallel codes are implemented in a
message-passing programming model using the Message Passing
Interface (MPI) standard [20]. MPI offers a large set of predefined
communication patterns called collective operations. Many newer
programming paradigms, such as PGAS languages [22, 33, 6, 5],
declarative parallel languages [17], or annotation-based languages
[35, 23] provide a conceptually simpler programming interface and
rely on the compiler or the communication layer for optimizations.
While some languages offer intrinsics or runtime libraries for sev-
eral collective operations, many do not support such a specifica-
tion at allmoving the burden of pattern recognition to the compiler
or forcing the user to hand-code non performance-portable algo-
rithms. The following table shows an exemplary overview of par-
allel languages and environments and their support for collective
operations:

MPI 2.2 [20] 17 collective library calls

UPC 1.2 [33] 8 collective library calls

CAF 2.0 [18] 9 collective intrinsics

CAF (Fortran 2008) [22] no support for collectives

OpenMP [23] only reductions

Chapel [6] compiler support mentioned

XscalableMP [35] compiler support mentioned



Many languages mention compiler support in publications but it is
not implemented yet to the best of our knowledge. Others provide
only the most commonly used collective operations. Even MPI
which offers arguably the most extensive and mature set of collec-
tive operations may not support all variations. A good example is
the recently introduced MPI_Reduce_scatter_block, which has
been missing in MPI for 15 years and which offers additional opti-
mization opportunities compared to MPI_Reduce_scatter. The
optimization framework that we will present could have auto-
detected this more restricted collective operation and replaced it
with a hand-tuned kernel transparently.
Another issue with today’s parallel programs is that many legacy
codes use point-to-point patterns instead of collective communi-
cations because at some point programmers observed them to be
faster than the corresponding MPI collective operation (in one par-
ticular MPI implementation). This problem is well known in the
MPI community leading to efforts to define self-consistency per-
formance metrics for MPI [16] to prevent it. Other applications
implement hand-tuned pipelined communication patterns instead
of using MPI optimized collective operations. The most promi-
nent example here is the High Performance Linpack benchmark
[8] which is used to rank machines in the top 500 list.
The lack of support for collective operations in many high-level
programming models, legacy MPI codes using “manual” collec-
tives, the potential for identifying new important collective com-
munications, and the pipelined collective implementations motivate
the automatic detection and optimization of known communication

patterns in parallel programs. Such a detection scheme would al-
low all parallel languages (including Chapel and XalableMP) to
take advantage of collective semantics and allow them to use highly
tuned communication kernels or collective acceleration hardware
(cf. Section 1.3).
Pattern detection and optimization could either be carried out dur-
ing compile time or during run time of the application. Compile
time, or static, optimizations have the advantage that their execu-
tion time does not influence the overall performance of the appli-
cations but it often suffers from exponential state explosion [34]
and it cannot be applied if the communication structure is input-
dependent. Run time, or dynamic, optimizations on the other hand
can benefit from all information available at runtime. The over-
heads during runtime are usually offset by the repeated use of the
optimized operation. We will show in our experimental section that
the number of necessary repetitions needed to offset the optimiza-
tion costs shrinks with the growing numbers of processes and is
often small (e.g., less than 10). Thus, we focus on dynamic opti-
mization in this work.

1.1 A Simple Internal DAG Representation
We use a simple, domain-specific directed acyclic graph (DAG)
formulation to represent communications that we call communica-
tion DAG (cDAG). cDAG allows the DAG specification of opera-
tions such as sends, receives and local operations. All cDAG op-
erations form a global graph with local dependencies (edges spec-
ifying the order of operations at each process) and remote depen-
dencies (edges specifying dataflow and synchronization between
processes).
In the following section, we show an example how well-known
compiler transformations can modify a PGAS code to specify a
cDAG IR during runtime. However, the focus of this work lies not
on generating the IR from application codes (there are too many
parallel libraries and languages in use today to tackle such a task in
a single article) but rather how a cDAG just-in-time compiler and
optimizer can detect communication primitives in the DAG IR and

how it can transform the communication graph to use optimized
kernels.

1.2 Extracting Communication Graphs
Communication graphs in MPI can be found in the parallel control
flow graph of an MPI program (pCFG, [3]), or they can be specified
directly as neighborhood collective communications, a functional-
ity proposed for MPI-3.
To demonstrate the applicability to PGAS languages, we use an
example from the FT code, the fast Fourier transform kernel from
the NAS benchmark suite that was ported to UPC [9]. It includes
the following code-fragment:

upc_barrier;

f o r ( i n t i = 0 ; i < THREADS; i ++) {

upc_memget((dcomplex*)&dst[MYTHREAD].cell[chunk*i],

&src[i].cell[chunk*MYTHREAD], sizeof(dcomplex) * chunk );

}

upc_barrier;

A parallel control flow graph (pCFG) as described in
[3] could be used to track the dataflow from one im-
age to another. Dataflow analysis identifies the buffer
dst[MYTHREAD].cell[chunk*i] as target and
src[i].cell[chunk*MYTHREAD] as source buffer. The
analysis would then replace the data movement with send and
receive calls which add edges to the communication DAG. This
simple transformation would then result in the following cDAG
code:

upc_barrier;

cDAG_graph g = cDAG_CreateGraph();

f o r ( i n t i = 0 ; i < THREADS; i ++) {
i n t msgs ize = s i z e o f ( dcomplex ) ∗ chunk ;

cDAG_Send(g, &src[MYTHREAD].cell[chunk*i], msgsize, i);

cDAG_Recv(g, &dst[MYTHREAD].cell[chunk*i], msgsize, i);

}

cDAG_Schedule sched = cDAG_CompileGraph(g);

cDAG_Run(sched);

We observe that the code’s branch structure stays the same which
simplifies the compiler analysis needed to perform this step. The
function cDAG_CreateGraph() creates a DAG object to which send
and receive operations and dependencies between them can be at-
tached (cDAG_Send() and cDAG_Recv() do not communicate data
themselves but add the specified communications to the communi-
cation graph). cDAG_CompileGraph() performs the online compi-
lation, detection, and transformation of the graph as described later
in this paper, and cDAG_Run() executes the optimized schedule.
Just like a binary program, a cDAG schedule can be re-used with
cDAG_Run() after it has been compiled, so repeated calls of the
same loop would not need to rebuild the graph (the code for check-
ing if the graph object already exists is trivial and has been omitted
for brevity and clarity). We remark that cDAG is somewhat similar
to MPI Datatypes [20] but targets communication patterns instead
of memory accesses.
The described analyses and transformations into cDAG graphs use
only well-known dataflow-techniques and simple loop splitting to
transform the serial code and are outside the scope of this work.
We also note that transformations to cDAG can always be done
manually or with the help of refactoring tools.



1.3 Optimized Collective Operations
Numerous research groups demonstrated speedups up to several or-
ders of magnitude using optimized algorithms and implementation
strategies for collective operations in hundreds of publications, e.g.,
[31, 4, 25]. In addition to such highly optimized point-to-point pat-
terns, nearly all modern supercomputers and high-performance net-
works such as Blue Gene/P [15], IBM PERCS [2], InfiniBand Con-
nectX2 [11], and Portals [29] provide specialized hardware support
or even separate networks [15] for collective operations. Such col-

lective accelerators provide significant speedup over implementa-
tions based on point-to-point messages and can easily be utilized
once a supported collective operation is detected.
Implementing collective operations on shared memory systems is
also a well-known research topic, e.g., [32]. The best implementa-
tions often depend on the details of the cache coherence protocol
on a particular architecture and are often not performance-portable.
Thus, machine-specific optimizations may provide benefits even
for shared memory models such as OpenMP.

1.4 Related Work
Detecting collective operations in point-to-point patterns is an im-
portant problem. Most previous works performed the detection
post-mortem by analyzing traces of the program run. This bears
several problems: (1) real traces are often of unmanageable size, (2)
on-node data-transformations (e.g., reductions) cannot be captured,
and (3) the optimizations cannot be applied dynamically during the
program run which is problematic if communication patterns de-
pend on the input data. The fundamental difference between most
trace-based analyses and our detection scheme is that we have ex-
act data-dependency information, where trace-based analyses often
resort to heuristic approches.
Knüpfer et al. proposed a scheme to detect alltoall, scatter, gather,
and broadcast by analyzing point-to-point patterns in message
traces [14]. This detection scheme can guide programmers to ap-
ply source-code changes. However, the authors mention that their
analysis suffers from detecting “pseudo patterns” for some pro-
cess counts but not for others. While programmers cannot replace
such an operation with a collective call, our dynamic optimization
scheme is able to optimize this case transparently without user in-
tervention. In addition, Knüpfer’s detection scheme is also not suit-
able to detect if data is forwarded through other processes as com-
monly done in manually optimized algorithms.
Kranzlmüller et al. investigate the detection of repetitive commu-
nication patterns in [26]. Like Knüpfer, they only look at single
point-to-point operations in MPI traces such that forwarding of data
through proxy processes cannot be detected in this scheme. The
same authors discuss how to guide compiler transformations with
the trace analysis techniques [28, 27], however, they leave the prob-
lem of detecting collective operations open.
We are not aware of any dynamic collective detection scheme. In
this work, we propose a scheme that is guaranteed to detect collec-
tive operations on the full process set in a communication graph.
That is, our scheme will detect collective operations, even after ar-
bitrary transformations of the communication graph (e.g., data for-
warding through proxy processes). Even though we focus on dy-
namic optimizations in this paper, the discussed techniques can also
be applied statically (post-mortem, trace-based, assuming that the
trace contains the whole dataflow including all buffer addresses).
We presented some preliminary results of our work as a poster [12].

1.5 Terms and Notation
Let the complete communication and dependency graph of repre-
sented asG = (V,E) where the vertex-set V contains the send and

receive operations, S ∪ R. The set of edges E = D ∪M contains
the communication edges (we call this matching set M ⊆ S ×R)
and local dependency edges D ⊆ V × V (this set specifies the
order of process-local send/recv operations). We use |V | = n,
E = M ∪D, and |E| = m in our analyses. The set of processes
is denoted as P and |P | = p.

1.6 Limitations and Contributions
The proposed scheme is limited by the power of the transformations
of a parallel code to a cDAG code. The symbolic analysis of pCFGs
is often limited by the problem of static message matching [3] and
fully automated transformations may not always be possible. Those
static compiler transformations are outside the scope of this work.
However, user-annotations or manual re-writing to cDAG can also
be used to enable our optimizations. Once all concurrent commu-
nication operations are expressed in cDAG, our automatic detec-
tion and transformation scheme is guaranteed to find and replace
all patterns that are semantically equivalent to predefined collective
operations.
The key contributions of our work are:
• A specification of synchronization and dataflow semantics

for communication DAGs.
• A dataflow propagation algorithm that transforms the com-

munication DAG into an efficient internal representation in
timeO(n logm).
• A classification of MPI collective operations with regards to

their level of abstraction and composeability.
• An algorithm for detecting all collective operations in time
O(n log n).
• A proof that the problem of detecting several collective op-

erations on process subsets in communication graphs is NP-
hard.

In general, we demonstrate a flexible approach for dynamic com-
munication optimization of parallel communication graphs. We
accompany the theoretical discussion and analysis of the dataflow
algorithms with a practical and complete open-source implementa-
tion of the analysis and transformation and demonstrate the benefits
of applying our scheme to different parallel codes and architectures.

2. DYNAMICALLY DETECTING

COLLECTIVE OPERATIONS
First we introduce our running example to explain our notation
and detection scheme. Figure 1 shows an optimized alltoall im-
plemented with a butterfly communication pattern [4] on four pro-
cesses. All previous collective detection schemes would not be able
to find the alltoall communication in this pattern. We will use this
nontrivial example throughout the paper (Figures 1 to 5) to describe
the dataflow propagation and other algorithms.

Figure 1: Alltoall with a Butterfly Pattern (p=4)

The send and receive sets (S and R) contain the send and receive
operations and elements in S and R are named s(...) and r(...),
respectively. Not all elements of those sets are shown in Figure 1



due to space constraints; Figure 2 contains all elements. Each el-
ement of those sets is a tuple with (owner, address, size, peer, ad-
dress at peer). The dependency set (D) contains local dependen-
cies (curved arrows) between operations. Dependencies are added
by the transformations described in Section 1.2 if there are depen-
dencies in the local control flow graphs between accesses (sends or
local operations) to buffers that have been received before. This is
illustrated in round 2 of the dissemination algorithm where the send
on each rank reads data that was received before, i.e., the send de-

pends on the completion of the respective receive. The matching

set (M), represented by straight arrows in Figure 1, is determined
by the local order (specified by D) and send/recv pairs (S/R).
The dataflow propagation and all auxiliary algorithms are serial,
i.e., we assume that the DAG is communicated (gathered) to a sin-
gle process to perform the analysis and transformation and is scat-
tered to all processes before execution. We will discuss the over-
heads of this approach in Section 3.

2.1 The Message Matching Problem
Manymessage passing specifications (e.g., MPI) use tagged com-
munications (or named channels). User-selected tags restrict the
valid executions such that only sends and receives with matching

tags and source arguments generate a flow in the communication
graph. Some messaging interfaces allow wildcard matching which
can lead to non-deterministic [34] communications. A correct pro-
gram must allow any matching order for non-determinstic match-
ings and our algorithm can match messages in one particular order
to avoid state explosion (cf. [34]).
Applications using either the one-sided PGAS or shared memory

model specify the remote buffer for each remote access directly
and our transformation to cDAG generates a send/recv pair for each
access. In this special case, the matching set M can be computed
in O(1) by including all auto-generated send/recv pairs and the
following matching algorithm is not necessary.
We now discuss an algorithm for generic dynamic matching, i.e.,
to construct the matching setM from the process-local setsRi, Si,
andDi for 0 ≤ i < p. The algorithm essentially simulates a paral-
lel execution of the schedule and needs to follow local and remote
(send/recv) dependencies to ensure message matches in correct or-
der.
Our algorithm starts to match send and receive operations that have
no dependencies (in the Matching Queue MQ). Once a match is
established, the operations and their dependencies are removed.
Operations for which all dependencies have been removed may be
and matched are thus added to MQ. This fix-point algorithm is re-
peated until it converges. This serial algorithm could be replaced
by a symbolic parallel execution with zero-byte messages to record
the matching setM , however, our algorithm performs significantly
better than sending each message over the network. The complete
pseudo-code is shown in the appendix in Algorithm 1.
An example for matching is shown in Figure 2 and 3. Figure 2
shows the initial state in the first iteration. All shaded tuples are in
MQ waiting to be activated. Figure 3 shows an intermediate state
of the algorithm where the first receive of process 0 is matched.
After matching, the dependency is removed and the second send to
process 2 is added to MQ (shaded grey). The algorithm continues
by picking the next unmatched operation.

Time Complexity of Matching.
Each node is inserted inMQ exactly once and in each fixpoint iter-
ation one node is removed from MQ, forcing convergence after n
iterations. Finding the matching target for each node and updating
the appropriate sets can be done in timeO(n log n) using red-black

Figure 2: Matching Example, initialization (p=4)

Figure 3: Matching Example, after a few steps (p=4)

trees. While traversing the tree, each of the |D| < m dependen-
cies is removed once and each vertex is traversed once leading to
an additional time of O(n + m). The total cost for the matching
algorithm is thus O(n log n+m).

2.2 Synchronization and Data Movement
Semantics

Every communication has two separable side effects: synchroniza-
tion and data movement. Synchronization semantics define for
each process from which other processes it receives a message,
i.e., it has to wait for. Data movement semantics define how mem-
ory locations are changed during the execution of a communica-
tion DAG. Both semantics are independent: synchronization can
happen without changing remote memory (the best example is a
barrier collective operation or simply zero-byte communications)
and data movement can happen without synchronization (e.g., one-
sided memory accesses).

2.3 Dynamic Dataflow Analysis
Our dataflow propagation computes both semantics: Synchroniza-
tion is captured in the wait set Wi, which specifies the processes
that process i needs to wait for (synchronize with) before exiting
the communication. The wait set Wi for process i can be com-
puted with a (reverse) traversal of the communication and depen-
dency graph G = (V,E = M ∪ D) starting at i and adding all
reachable processes to Wi. We omitted the detailed algorithm of
this simple traversal due to space restrictions.
The more complex data movement semantics are expressed as a
set of dataflow tuples from all original sends S0 to all final re-
ceives R∞. An original send is a send operation that specifies user
memory that has not been received from another process and a fi-
nal receive is a receive that specifies user memory that will not
be overwritten as destination. The sets S0 and R∞ represents all
dataflow semantics of a communication graph. In fact, they form an
IR similar to the well-known Static Single Assignment form used
for serial compiler transformations (every address is only written
once). Thus, we call the resulting representation of the dataflow
from S0 to R∞ Static Single Transfer (SST; each transfer from a
source to a target buffer happens exactly once). The SST form ex-
presses the overall data-movement abstractly and allows to detect
(pattern-match) collective operations.



We use a dataflow propagation algorithm to transform our DAG IR
into SST form. This fixpoint algorithms propagates the send buffer
information along the matched send/receive edges in the graph until
they reached the final receives. Like before, each send and receive
is specified as a tuple of (owner, start address, size, peer (source or
destination), start address at peer). Our algorithm works on a queue
of independent sends (sends without incoming dependencies) and
propagates the dataflow from the sends to the final receives. As re-
ceives are processed in the dataflow, their dependencies are marked
as satisfied which may enable new sends to be added to the queue.
Figure 4 shows the tuple transformations performed by the dataflow

Figure 4: The Dataflow Propagation (p=4)

propagation algorithm. The original tuples are shown in the black
lines, marked with I. the tuples that are transformed in the first it-
eration are shown in red and marked with II, and the tuples trans-
formed in the second (last) iteration are shown in green, marked
with III. The dataflow algorithm has to split send/recv matches in
the second iteration to separate data flows from the local memory
and data that was received in the first iteration. If a received buffer
is not sent fully or sent to different destinations, we split the back-
wards dataflow into two separate flows (SST assignments, repre-
sented as tuples).
Figure 5 shows the split at process 0 in the first iteration of the
dataflow algorithm. Since the two-element message from process 0
to process 2 sends data from local memory (original send) as well
as data that was received from process 1, it needs to be split into
two SST assignments.

Figure 5: Split Example in Butterfly Alltoall (p=4)

In our example in Figure 4, the final set of receive tuples at process
0 is {(0,0,1,0,0), (0,1,1,1,1), (0,2,1,2,2), (0,3,1,3,3)}, which means
that process 0 receives data from location i ∈ {1, 2, 3} at process
i into local location i. These SST assignments represent an alltoall
pattern. We will discuss pattern detection in Section 2.4.
Algorithms 3 and 4 in the appendix show the detailed propagation
and split algorithms that compute the SST for each process.

Time Complexity of Dynamic Dataflow Analysis.
We analyze the complexity by stating some invariants for the
dataflow propagation. Every send or receive will be visited exactly
once in the algorithm (data is propagated only forward). Find-
ing a match in the ordered matching set M costs O(log |M |).
Each split can generate new send/recv vertices. However, a crit-
ical observation is that one recv in the input can result in a max-

imum of two new split send/recv pairs (cf. Figure 5). And ev-
ery newly generated send/recv pair can again only generate a sin-
gle split because the communicated memory is consecutive. Thus,
there are a maximum of O(|V |) additional send/recv pairs gener-
ated in splits. The total runtime of the propagation algorithm is thus
O(|V | log |M |) = O(n logm).

2.4 Detecting MPI Collective Operations
Each collective data movement operation can be defined as a
set of SST assignments (as returned from the dataflow propa-
gation algorithm), for example a broadcast can be defined as
(i, oi, l, j, oj) 0 ≤ j < P, j 6= i, where i is the root process, s
is the length of the message, oi is the offset at the root process, j
are all other (receiving) processes, and oj the local memory offset
at process j.

2.4.1 Collective Data Movement Signatures in SST

We now discuss the signatures for all collective operations that
move data. We use the SST tuple notation like before, i.e.,
(s, os, l, r, or) means that data of size l is moved from offset os
at process s to offset or at process r. We use r to denote the root
process of a collective (if applicable), j and i to denote source and
target processes respectively, ox to denote the local offset for com-
munication originating or terminating at process x, and ox,y to de-
note local offset for communication from process x to y.
The following table lists the data movement signatures that are used
to detect common collective operations:

bcast (r, or, l, j, oj) 0 ≤ j < p, j 6= r
gather (i, oi,r, l, r, or,i) 0 ≤ i < p, i 6= r
scatter (r, or,j , l, j, oj) 0 ≤ j < p, j 6= r
allgather (i, oi, l, j, oi,j) 0 ≤ i, j < p, j 6= i
alltoall (i, oi,j , l, j, oi,j) 0 ≤ i, j < p, j 6= i

This list can easily be extended with any data movement signature.
The last condition (j 6= r or j 6= i) removes the send-to-self, i.e.,
local copy, from the detection.

2.4.2 Detection Hierarchy for Collective Operations

The data movement patterns show that MPI’s collective operations
form a strict hierarchy, i.e., some collective operations can be ex-
pressed as a set of others. For example, an alltoall can be expressed
with p broadcasts, an allgather can be expressed as p gather oper-
ations, or a broadcast can be expressed as a scatter from the same
memory location at the root. Collective operations that can be ex-
pressed as a composition of other operations offer a higher level of
abstraction with higher optimization opportunities [14]. Thus, we
establish the following order of collective operations from “high-
est” to “lowest” abstraction: allgather � alltoall � broadcast �

gather, scatter.

2.4.3 An Algorithm to Detect Collective Operations

We can now detect collective operations by searching for the data
movement signatures from themost abstract to the least abstract op-
eration as defined before. After finding an operation, we remove all
tuples that matched this operation and insert a call to the detected
operation instead (i.e., remove and replace the communication ker-
nel). We then run the algorithm repeatedly until no operation is
detected.
The detailed algorithm is shown in the appendix as Algorithm 5.

Time Complexity.
The number of SST assignments is limited by O(n) because each
send and recv will result in one receive tuple and each send/recv
pair can at most generate one new assignment in a split. The tuples



Figure 6: A more complex artificial test graph with 20 messages among five processes

are sorted inO(n log n) before the detection. Assuming a constant
number of message sizes, each tuple is only considered once in the
detection of each algorithm. Thus, the overall time complexity of
the detection algorithm is O(n log n).

Operations with Noncontiguous Data Access.
Some communication layers (e.g., MPI) offer support for noncon-
tiguous data layouts in send and receive memory. This allows to
send data that is scattered in memory within the same collective
operation call. The detection algorithm will detect one collective
operation for each contiguous block (SST tuple). We can then sim-
ply combine all collective operations of the same shape (i.e., the
same operation and the same root if applicable) into one collective
operation with noncontiguous data layouts (e.g., MPI datatypes).

Detecting Vector Collective Operations.
We excluded the vector operations alltoallv, alltoallw, allgatherv,
scatterv, gatherv from our previous classification because they can
trivially match many SSTs, e.g., a simple send/recv pair can be
expressed as gatherv with all counts but one set to zero.
Nevertheless, we can modify our detection algorithm to support
vector collectives if we allow arbitrary data-sizes between pairs of
processes and define a factor τ which specifies the desired density

of the collective, i.e., the percentage of edges relative to the non-
vector operation that need to exist in the detected vector collective.
The vector collective detection is similar to the previous algorithm
but only τ · p(p − 1) (allgather, alltoall) or τ · (p − 1) (broad-
cast, gather, scatter) need to be found to detect a collective vector
operation.

Barrier Collectives.
Barrier collectives are an exception because data is neither commu-
nicated nor reduced. Thus, the detection based on dataflow cannot
detect barrier calls. However, the barrier call will be detected by
the synchronization detection and will result in complete wait sets
for all processes. In general, any transformation must check if is
fulfills the synchronization specified by the wait sets. If it lacks
synchronizations, then they can simply be introduced by zero-byte
send/recv pairs.

3. EXAMPLES AND EXPERIMENTS
Figure 6 shows a more complex example (one of our unit tests) to
demonstrate the capabilities of our detection scheme. The left side
shows a communication graph with five participating processes.
Each solid arrow represents a message with a send (sendbuf, size)
and a receive (recvbuf, size) at the beginning and end. The middle
figure shows the result after our detection algorithm and the right
shows the optimized graph.
We tested several different detection patterns in order to evaluate

correctness and performance of our implementation. We generated
simple linear and complex (binomial tree, bruck, dissemination)
broadcast, gather, scatter, and alltoall graphs and for different num-
bers of processes and added p randommessages with dependencies.
Our implementation detected all collectives and correctly isolated
all operations that were part of it. In the following, we provide
a performance analysis for detecting a broadcast, implemented as
binomial tree on p processes.

3.1 Experimental Environment
Our optimization framework is implemented in C++ and uses MPI
as transport layer. We analyzed the performance on multiple par-
allel systems and present the two systems: (1) Odin, an InfiniBand
cluster with quad-core Opteron CPUs and (2) NERSC Hopper, a
Cray XE6 with 2.1 GHz AMD MagnyCours CPUs. We used the
default C++ compilers on both systems with highest optimization
available (g++ 4.1.2 with -O3 on Odin and PGI 11.7 with -fast on
Hopper). The complete source code and tests can be downloaded
from http://unixer.de/research/cDAG.

3.2 Scalability and Performance Analysis
Figure 7(a) shows the runtime of the different parts of the col-
lective detection on Hopper as described before. Matching im-
plements a simple depth-first search (DFS) traversal as described
in Section 2.1, Dataflow is the dataflow propagation algorithm,
Colldetect is the detection and replacement algorithm, and Scat-

ter/Gather represents the communication overhead to gather all
the schedules to a single process and distribute (scatter) the opti-
mized schedules back to all processes.
The figure shows measurement results as dots and our performance
models as lines. For the broadcast problems, we have n ≈ p ≈ m.
Thus, we use a · p log(p) to represent the runtime of the Dataflow,
Matching and Colldetect phases. The used scatter and gather im-
plementations are linear (sending from the root to all processes).
For relatively small process counts, the (≈ 100 Bytes) messages
are communicated quickly into local eager MPI buffers. Begin-
ning with ≈ 2500 processes, those buffers are exhausted and the
curve starts the expected linear slope and we use the model b · p
to represent the runtime. The performance for large process counts
(> 2000) can be accurately represented with the following con-
stants for a and b:

System a (Dataflow) a (Matching) a (Colldetect) b

Hopper 0.59 µs 0.19 µs 0.15 µs 39 µs

Odin 0.85 µs 0.15 µs 0.13 µs 21 µs

The b factor in the communication is dominating on both sys-
tems with 39µs and 21µs per process. For example, the detection
and optimization scheme would take ≈ 15s on 300.000 cores of a
petascale-class machine. The used memory for 300.000 processes
is less than 85 MiB (283 Bytes per process). The whole optimiza-
tion process can be offloaded to a separate core and optimize sched-



0 1000 2000 3000 4000

0
2
0

4
0

6
0

8
0

Number of Processes

T
im

e
 [
m

s
]

Matching
Dataflow

Colldetect
Scatter/Gather

(a) Runtime of different parts of the collec-
tive detection for a binomial broadcast

20 50 100 200 500 1000

Number of Processes

A
llr

e
d
u
c
e
 R

u
n
ti
m

e
 [
s
]

0
.0

1
0
.1

1
1
0

1
0
0 reflin

reflog, caftut
nas
optimized

(b) Various CAF allreduce implementations
on Hopper and optimized version

0 1000 2000 3000 4000

Number of Processes

0
.0

1
0
.1

1
1
0

1
0
0

T
im

e
 [
m

s
]

1
2

3
5

1
0

2
0

5
0

1
0
0

N
u
m

b
e
r 

o
f 
It
e
ra

ti
o
n
s

Optimized
Unoptimized

Iterations needed
Optimization runtime

(c) Performance benefits of detecting and re-
placing a linear broadcast

Figure 7: Experimental Results of the cDAG implementation with collective detection enabled

ules while the (unoptimized or partially optimized) communication
takes place.

3.3 Microbenchmarks
We now discuss the possible performance gain by detecting and
replacing known communication patterns in existing applications.
We utilize the patterns that we found in the Co-Array Fortran NAS
codes [7], the UPC NAS codes [9], and SPhot, an MPI application
from the Sequoia benchmark suite.
First, we investigate the performance of logical allreduce patterns
in Co-Array Fortran. We compare six different implementations in
order to capture several versions of code that a typical user would
implement. The first implementation (“reflin”) is a linear reference
algorithm from [22] (Section 2.5 “Summing over the co-dimension
of a co-array”). The second algorithm (“reflog”) is a more com-
plex version with logarithmic complexity of the same algorithm
[22] (Section 4.4). The third implementation (“caftut”) has identi-
cal performance as “reflog” and was given as an example by Num-
rich in [21]. The fourth implementation (“nas”) was extracted from
the Co-Array Fortran version of the NAS benchmarks [7]. The last
implementation (“optimized”) represents an architecture-optimized
call to MPI_Allreduce.
Figure 7(b) shows the time to perform 1000 allreduce calls with dif-
ferent number of processes on the Hopper system using the Gemini
interconnect that is optimized for PGAS and Co-Array Fortran [1].
We used the Cray PE version 3.1.61 for all experiments. We ob-
serve that the different implementations have widely varying and
scale-dependent performance characteristics. However, all user
implementations are significantly slower than the well optimized
“opt” algorithm (more than three orders of magnitude for the linear
implementation).
As discussed before, the dynamic optimization comes with an over-
head during runtime (cf. Figure 7(a)) and it is important to com-
pare the runtime overhead to the gains of the optimized schedule.
In Figure 7(c) compares the naive (as one would do in CAF for
example) and the transformed execution of a broadcast on Hopper.
It also shows the runtime of the complete detection and transfor-
mation (magenta, diagonal crosses) which is just slightly slower
than a single linear broadcast. The green line shows how often a
schedule needs to be re-executed before our scheme decreases the
application runtime. We see that the necessary number of iterations
is rapidly decreasing with scale and with p > 1500 even two iter-
ations (a single re-use of the schedule) are sufficient to offset the
costs of the optimization. On Odin two iterations are beneficial for
p > 1000.

3.4 Application Benchmarks
In this section, we demonstrate the usefulness of our method on
two representative applications, SPhot and NAS/FT. SPhot is part
of the Sequoia benchmark suite. It contains a loop which performs
a logical gather using point-to-point messages. Our cDAG scheme
detected and optimized this communication pattern by replacing it
with a call to a vendor-optimized gather call. The observed appli-
cation improvement ranged from 0.3% to 14.1%.
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Figure 8: NAS/FT Performance on Hopper

To demonstrate the applicability to PGAS codes, we applied the
cDAG scheme to the NAS codes that were ported to UPC [9].
While those codes offer several opportunities to detect and optimize
collective patterns, we will focus on the FT (fast Fourier transform)
benchmark in the following. The benchmark contains the exact
loop and transformation that we showed in the example in Sec-
tion 1.2. We used the class C FT benchmark up to 508 processes,
to scale further we utilized class D (which could not be used for
smaller numbers of processes due to memory requirements).
Our scheme replaces the communication in NAS/FT with an opti-
mized version that uses Cray’s DMAPP low-level communication
API to perform the alltoall. We observe a 29% improvement of
the raw communication performance which translated to 16% im-
provement in overall application performance at 1008 processes.

4. ON DETECTING COLLECTIVES ON

PROCESS SUBSETS
We discussed fast algorithms for detecting arbitrary collective op-
erations in arbitrary communication patterns. However, those algo-
rithms only detect operations that are performed on the complete

set of processes. The problem of detecting collective operations
on arbitrary process subsets is also relevant. For example, a pat-



tern where every other process participates in a global broadcast
or a pattern where all but one processes perform a global alltoall
exchange.
This problem is much harder; we start by showing that the simpli-
fied problem of detecting maximum groups with barrier semantics
is NP-complete. This makes the general case of detecting collective
operations on maximum process subsets NP-complete.

4.1 Finding Maximum Barrier Groups
We say that a set C ⊂ P has barrier semantics iff the wait sets
Wi (cf. Section 2.3) of all i ∈ C include all processes in C. We
define the single largest barrier (SLB) problem as follows: Find
the largest subset of C ⊂ P that has barrier semantics and that
cannot be extended by another process p ∈ P such that the set
C ∪ {p} has barrier semantics.

THEOREM 1. The construction problem of SLB is NP-

complete.

PROOF. First, we show that SLB is in NP: Testing if a subset
of processes C of a pattern has barrier semantics can be done by
checking if every node in the wait set of all other nodes in C. The
wait sets can be established in polynomial time as described in Sec-
tion 2.3 and the check can be performed in O(|C|2).
We show NP-completeness of the SLB problem by showing
CLIQUE ≤P SLB. Let the undirected graph G = (V,E) be the
input for CLIQUE. We can now construct a cDAG communication
graph G′ = (V ′, E′) which has an SLB of size k iffG has a clique
of size k. The mapping between elements in V and processes in the
cDAG is bijective. For each edge (u, v) ∈ E add a send and a re-
ceive operation to V ′ so that the process u′ mapping to u sends data
to the process v′ mapping to v, the cDAG contains no dependencies
and the matching set E′ is such that (u, v) ∈ E ⇔ (u′, v′) ∈ E′.
By construction, G′ now has a SLB of size k iff G has a clique of
size k.
The barrier problem is the simplest to show NP completeness since
no data is communicated. However, adding dataflow in the form
of SST does not make the problem simpler. Informally said, the
detection of all-collectives (allreduce, alltoall, allgather, etc.) in our
SST formulation is likely to be as hard as solving the SLB problem.

4.2 FindingMaximum Subsets of Rooted Col-
lectives

The problem of finding maximum groups for rooted collectives
(e.g., scatter, gather, bcast) can be solved in polynomial time in
the SST form (Algorithm 3).
The detection algorithm is similar to the collective detection al-
gorithm in Section 2.4.3. For example for broadcast or scatter it
simply tests the number of flows of equal size from each process to
other processes. The process with the highest number of flows to
other processes is root of the largest broadcast or scatter subgroup.
The matching nodes can be removed and the algorithm can be ap-
plied to find the next largest set. The time to perform this detection
is O(n log n). Algorithms for all other rooted collectives follow
the same principle.

5. DISCUSSION AND FUTURE WORK
In this work we propose a dynamic transformation scheme for
communication graphs as first steps towards communication- and
network-centric compiler optimizations. We expect this area of re-
search to grow quickly in importance as we are moving towards
higher parallelism. Our transformations uses an abstract graph-
based representation as input and we developed a set-based single
static transfer (SST) representation that represents dataflows from

source buffers to target buffers in a distributed memory model. We
show that SST is ideally suited for analyses such as the detection
of collective operations. We demonstrate fast algorithms for build-
ing the SST form and computing synchronization semantics of the
input graph.
We introduced a hierarchy of collective operations based on their
level of abstraction and composeability. We demonstrated that the
algorithms are able to detect collective operations on the full pro-
cess set on arbitrary subsets of operations in a graph. We proved
that finding maximum synchronization groups (e.g., detecting bar-
riers) on arbitrary process subsets is NP-complete. However, we
also provide polynomial-time algorithms to detect rooted collec-
tives on largest process subsets. Developing practical heuristics for
detecting all-collectives on maximum process subsets is an inter-
esting problem for future work.
Our approach for dynamic communication graph optimization is
feasible in practice up to large numbers of processes. Our accurate
performance model of the optimization time on 300.000 processes
predicts ≈ 15s and a memory requirement of 283 Bytes per pro-
cess.
We demonstrated that PGAS microbenchmark performance can be
improved by an order of magnitude over an optimized textbook
version and a practical implementation of the NAS benchmarks.
We also measured performance improvements of up to 14% for the
SPhot application from the ASC Sequoia Benchmark suite and up
to 16% for the NAS FT benchmark.
Our work is an important step towards automatic dynamic and
static optimization of communication patterns in large-scale com-
puting. Detecting collective operations and replacing them with
hardware-accelerated or optimized implementations is comparable
to known techniques such as auto-vectorization. More advanced
techniques that can be applied in addition to the optimizations pro-
posed in this work, such as automated topology-aware graph tuning
and transformations are being developed.
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APPENDIX

A. DETAILED ALGORITHMS
The appendix lists all algorithms in pseudo-code to ensure repro-
ducibility.

A.1 Matching Algorithm
This algorithm computes the matching set M from the sets R, S,
andD. It assumes that the sets have been collected from all partic-
ipating processes and are arranged in process-local setsRi, Si, and

Di such that R =
p⋃

i=1

Ri, S =
p⋃

i=1

Si, andD =
p⋃

i=1

Di.

Algorithm 1: Matching Algorithm

Input: List of cDAG graphs Gi, grouped by process i: a set
of receives (Ri), a set of sends (Si), and a set of
dependencies (Di).

Output: Set of matches (M ).
MQ← all independent nodes // unsorted list of nodes;1

∀i : AQi ← ∅ // AQ is a sorted list of nodes;2

whileMQ 6= ∅ do3

a← pop(MQ);4

// invert type, swap peer and owner:5

y ← (atype, apeer, aowner, asize, atag) ;
if y ∈ AQapeer

then6

AQapeer
← AQapeer

\ {y};7

remove_deps(a,Daowner
,MQ);8

remove_deps(y,Dapeer
,MQ);9

M ←M ∪ {(a, y)};10

else11

AQaowner
← AQaowner

∪ {a};12

The procedure remove_deps removed all dependencies to
matched operations and adds the newly freed operations to the
matching queue MQ.



Procedure remove_deps(n, P, MQ)

Input: Node n, set of dependencies D, listMQ
forall (n, x) ∈ D do1

D ← D \ {(n, x)};2

if ∀y : (y, x) /∈ D then MQ←MQ ∪ {x}3

A.2 Dataflow Propagation
The dataflow propagation algorithm works on the full DAG identi-
fied by the sets S, R, D, and M . It propagates the send buffers as
sources to the receive buffers and uses splitting when incomplete
buffers are sent. The result of the propagation algorithm is a static
single transfer (SST) form (a set of SST assignments in form of
tuples) where each memory location is written exactly once.

Algorithm 3: cDAG Dataflow Propagation Algorithm.

Input: cDAG Graph as set of receives (R), set of sends (S),
set of no-ops (N ), set of matches (M ⊆ S ×R), and
set of dependencies (D ⊆ ({S,R,N} × {S,R,N}).

Output: Updated set of receive dataflow tuples R (SST).
// recv and send tuples: (owner:start:size:peer:sstart);1

set all r ∈ R, s ∈ S to (owner:start:size:NIL:NIL);2

FR ← ∅; // finished receives;3

FS ← ∅; // finished sends;4

IS ← ∅; // independent sends;5

find IS ⊆ S for ∀s ∈ IS ⇒ (x, s) /∈ D;6

while |IS| 6= 0 do7

foreach s ∈ IS do8

find r ∈ R for (s, r) ∈M ; // or fail;9

if ssstart = NIL then10

update r dataflow tuple to (X:X:X:s.owner:s.start);11

else12

update r dataflow tuple to (X:X:X:s.peer:s.sstart);13

remove (r, ∗) from D;14

FR ← FR ∪ {r}; FS ← FS ∪ {s};15

remove all no-ops (n, ∗) from D for (x,n) /∈ D;16

AS ← ∅; // active sends;17

find AS for s ∈ AS ⇒ s ∈ S ∧ (x, s) /∈ D ∧ s /∈ FS ;18

IS ← ∅; // reset independent sends;19

foreach a ∈ AS do20

OR ← ∅; // set of receive overlap regions;21

insert each r ∈ FR and rowner=aowner that overlaps22

with region (astart,asize) into OR;
SS = split(OR, a); // splits sends and matching23

receives;
IS ← IS ∪ SS ;24

if (|FR| 6= |R|) ∧ (|FS | 6= |S|) then25

return “unmatched Send/Recv or cycle!”26

// collective detection can now be done for receive tuples;27

A.2.1 Split

A split is performed when a part of a buffer that was received from a
process is sent to another process. The split creates a new dataflow
tuple (which will eventually be an SST assignment).

B. COLLECTIVE DETECTION
The collectve detection algorithm finds collective operations in the
SST form and removes all tuples that form the collective operation.
It can then be replaced by a call to special hardware or an optimized
algorithm.

Algorithm 4: Split.

Input: set of overlapping receives OR and single send s.
Output: Set of split sends SS , updated sets S,R,M,D as

side-effect.
if |OR| = 1∧ r ∈ Or : ∧(rstart, rsize) = (sstart, ssize) then1

speer ← rpeer;2

ssstart ← rsstart;3

return {s} // no split necessary (expected case)4

sort OR by start address;5

find r for (s, r) ∈M ;6

riter← rstart;7

dummyops dr ← ds ← new cDAG no-op;8

replace r with dr in R,D; replace s with ds in S,D;9

remove (s, r) from M ;10

siter← sstart;11

foreach ir ∈ OR (sorted) do12

locrange← max(irstart,siter) - siter;13

if locrange > 0 then14

// if we send something that wasn’t received;15

send ns ← (sowner ,siter,locrange,sowner,siter);16

recv nr ← (rowner ,riter,locrange,sowner,siter);17

S ← S ∪ {ns}; SS ← SS ∪ {ns}; R← R ∪ {nr};18

D← D ∪ {(dr, nr)}; D ← D ∪ {(ns, ds)};19

M ←M ∪ {(ns, nr)};
siter← siter + locrange; riter← riter + locrange;20

remrange← min(irstart+irsize,sstart+ssize) - siter;21

send ns← (sowner ,siter,remrange,irsowner,irsstart);22

recv nr ← (rowner ,riter,remrange,irsowner,irsstart);23

S ← S ∪ {ns}; SS ← SS ∪ {ns}; R← R ∪ {nr};24

D ← D ∪ {(dr, nr)};D ← D ∪ {(ns, ds)};25

M ←M ∪ {(ns, nr)};
siter← siter + remrange; riter← riter + remrange;26

Algorithm 5: Collective Detection.

Input: All dataflow tuples R in STT form.
Output: Detected collectives and remaining tuples in R.
foreach size s in any tuple ∈ R do1

C ← ∅; // detection set;2

foreach i = 0..p and j = 0..p and i 6= j do3

find tuple r ∈ R with size s, owner=i, and peer=j;4

if r exists then C ← C ∪ {r}5

if |C| = p(p− 1) then6

if input bufs for each peer are identical then found7

alltoall of size s;
else found allgather of size s;8

R← R \ C; // remove tuples that formed collective;9

S ← ∅; // scatter set;10

G← ∅; // gather set;11

foreach r is peer in any tuple of size s do12

foreach i = 0..p and i 6= r do13

find tuple r ∈ R with size s, owner=i, and peer=r;14

if r exists then S ← S ∪ {r} find tuple r ∈ R15

with size s, owner=r, and peer=i;
if r exists then G← G ∪ {r}16

if |S| = p− 1 then17

if input buf for each owner is identical then found18

bcast of size s;
else found scatter of size s;19

R← R \ S; // remove tuples that formed scatter;20

if |G| = p− 1 then21

found gather of size s;22

R← R \G; // remove tuples that formed gather;23


